
An HMM and structural entropy based
detector for Android malware: An empirical study

Gerardo Canfora, Francesco Mercaldo *, Corrado Aaron Visaggio
Department of Engineering, University of Sannio, Benevento, Italy

A R T I C L E I N F O

Article history:

Received 30 July 2015

Received in revised form 8 February

2016

Accepted 29 April 2016

Available online 6 May 2016

A B S T R A C T

Smartphones are becoming more and more popular and, as a consequence, malware writers

are increasingly engaged to develop new threats and propagate them through official and

third-party markets. In addition to the propagation vectors, malware is also evolving quickly

the techniques adopted for infecting victims and hiding their malicious nature to antimalware

scanning. From SMS Trojans to legitimate applications repacked with malicious payload,

from AES encrypted root exploits to the dynamic loading of a payload retrieved from a remote

server: malicious code is becoming more and more hard to detect.

In this paper we experimentally evaluate two techniques for detecting Android malware:

the first one is based on Hidden Markov Model, while the second one exploits structural

entropy. These two techniques have been successfully applied to detect PCs viruses in pre-

vious works, and only one work in literature analyzes the application of HMM to the detection

of Android malware. We demonstrate that these methods, which reveal effective for PCs

virus, are also successful for detecting and classifying mobile malware.

Our results are promising: we obtain a precision of 0.96 to discriminate a malware ap-

plication, and a precision of 0.978 to identify the malware family.

© 2016 Elsevier Ltd. All rights reserved.

Keywords:

Malware

Mobile

HMM

Entropy

Android

1. Introduction

With the growth of smartphones capabilities, malicious
software targeting mobile devices is rapidly spreading, and
it is getting more and more successful in evading the
detection.

In 2013, the growth rate of mobile malware was far greater
than the growth rate of new malware targeting PCs (Alcatel
Lucent, 2013), for the first time in malware history.

New kinds of malware spread out continuously at a very
fast pace, and malware writers refine both the evasion tech-
niques and the techniques for obtaining tangible return from
the attacks, in terms of money or damage to the victim
(F-Secure, 2015). Unfortunately, current solutions to protect users

from new threats are still inadequate (Fraunhofer AISEC, 2013;
Visaggio and Mercaldo, 2015). For example, a malware that is
plaguing a huge number of devices while the authors are writing
this paper is the ransomware (InfoWorld, 2013), which en-
crypts data stored on the device and holds it for ransom. The
information will be released only after the victim pays the re-
quired amount, often in bitcoin.

In addition to this, there exist several techniques to
allow the mobile malware to evade signature detection
(Ramachandran et al., 2012; Rastogi et al., 2013), which makes
detection harder.

In the meantime, simple forms of polymorphic attacks tar-
geting Android platform have been seen in the wild (Bayer et al.,
2006): the main effect of polymorphism (and metamorphism)
is that signature-based detection becomes ineffective.

* Corresponding author. Department of Engineering, University of Sannio, 82100 Benevento, Italy. Tel.: +390824305529.
E-mail address: fmercaldo@unisannio.it (F. Mercaldo).

http://dx.doi.org/10.1016/j.cose.2016.04.009
0167-4048/© 2016 Elsevier Ltd. All rights reserved.

c om pu t e r s & s e cu r i t y 6 1 (2 0 1 6) 1 – 1 8

Available online at www.sciencedirect.com

journal homepage: www.elsevier.com/ locate /cose

ScienceDirect

mailto:fmercaldo@unisannio.it
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/COSE
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2016.04.009&domain=pdf
think
高亮

think
高亮

think
高亮

That considered, it urges to develop new techniques to detect
malware targeting mobile devices.

Recent papers (Attaluri et al., 2008; Baysa et al., 2013) have
used the structural entropy to detect metamorphic virus and
Hidden Markov Models (HMM) to classify them.We observed that
the way Android malware evolves makes it similar to meta-
morphic malware, in certain regard. As a matter of fact, writers
of malware for Android use to modify some existing malware,
by adding new behaviors or merging together parts of differ-
ent existing malware’s codes. This explains also why Android
malware is usually grouped in families: in fact, given this way
of generating Android malware, the malware belonging to the
same family shares common parts of code and behaviors.

Considered these similarities, and considered that Struc-
tural Entropy and HMM were able to successfully detect
metamorphic viruses for personal computer (Attaluri et al., 2008;
Baysa et al., 2013), we investigate with this paper whether these
two techniques can be effective in recognizing Android malware
and the malware families. The fact that these techniques are
effective with personal computers’ malware does not entail that
they are effective also for Android malware.

As a matter of fact, Android presents program’s struc-
tures and features that make an Android malware different
from a PC malware, since these features are leveraged by
malware writers for developing techniques of infection, evasion
and payload activation that are not used in PC’s malware. Ex-
amples are the dynamic loading that permits to dynamically
add malicious code to an app, the intent based programming
that allows techniques of attacks like service or activity hi-
jacking (Chin et al., 2011), and the system of permissions that
limits the range of actions a malware can do, but allows attacks
like the update attack (Poeplau et al., 2014), which is a very ef-
fective and widespread anti-detection technique. These
peculiarities of Android lead us to wonder whether struc-
tural entropy and HMM hold their effectiveness in detecting
malware also when applied to malicious software written for
Android. Moreover, at the best knowledge of the authors, only
one paper explores the effectiveness of HMM for detecting
Android malware (Chen et al., 2014), but the authors ob-
tained lower performances, used a smaller dataset than the
one we used in the experiments, and applied HMM on differ-
ent features from the ones our method relies on.

The experiments we carried out to demonstrate that HMM
is effective in recognizing malware, i.e. with a precision of 0.96,
while the structural entropy successfully identifies the family
a malware belongs to, with a precision of 0.98.

Identifying the family that a malware belongs to is of
primary importance as it helps to discover new malware fami-
lies (Khoo and Lio, 2011; Ma et al., 2006), creates models of
provenance and lineage (Dumitras and Neamtiu, 2011), and gen-
erates phylogeny models (Karim et al., 2005).

The paper proceeds as follows: the next section provides
background notions about HMM and structural entropy and dis-
cusses the related work; Section 3 discusses the adoption of
HMM and structural entropy methods to detect mobile malware;
Section 4 discusses the experimental evaluation; Section 5 il-
lustrates the results of experiments; Section 6 discusses the
detection performance of HMM and structural entropy methods;
Section 7 explains the threats to validity and, finally, conclu-
sions are drawn in Section 8.

2. Background and related work

Before discussing the state of the art of malware detection using
HMM and structural entropy, we recall the essential back-
ground about HMM and structural entropy.

2.1. HMM

The Hidden Markov Model (HMM) is a statistical pattern analy-
sis algorithm. HMM uses the following notations:

T = length of the observed sequence;
N = number of states in the model;
M = number of distinct observation symbols;
O = observation sequence {O0, O1, … , OT−1};
A = state transition probability matrix;
π = initial state distribution matrix.

Fig. 1 shows the generic scheme of a Hidden Markov Model,
which represents the states and the observations at time t, re-
spectively with Xt and Ot, and the probabilities of transitions
among the states, aij which is the probability of the transition
from the state Xi and the state Xj.

The Markov process, which is hidden behind the dashed line,
includes an initial state X0 and the A matrix, i.e. the set of the
probabilities of all the transitions among the states.

The only observable part of the process is represented with
the Oi; the matrix B contains the probabilities that an obser-
vation Oi be related to a state Xi.

Common applications of HMMs are protein modeling (Plotz
and Fink, 2005) and speech recognition applications (Kinjo and
Funaki, 2006), i.e. identifying whether a protein can be attrib-
uted to a known protein structure, or if a speech fragment can
be associated to a known speech pattern.

As a machine learner, HMM works in this way: the first step
consists of creating a training model that represents the input
data (training data).

The training model includes a chain of unique symbols ob-
served within the input data along with their positions in the
input sequence.

This model will be used by the HMM to determine if a given
new input sequence shows a pattern similar to that found in
the model.

In a recent paper (Attaluri et al., 2008), HMM machine learn-
ers have been applied to detect metamorphic virus.

Although metamorphic engines change the form of viral
copies by employing different code obfuscation techniques,
some similar patterns can be found within the same family
of virus.

An HMM-based detector gathers the input data from a
sample of known virus and builds the training model (one for
each family virus) with this input dataset.

Fig. 1 – The scheme of a Hidden Markov Model.

2 c om pu t e r s & s e cu r i t y 6 1 (2 0 1 6) 1 – 1 8

think
高亮

think
高亮

think
高亮

Subsequently, any file can be tested against these models
to determine if it can be considered as belonging to one among
the learned models. If an input file belongs to a model, then
it is classified as a member of the virus family that the model
represents.

For space’s reasons we do not provide mathematical details
of the HMM, which can be found in the literature (Rabiner, 1989).

2.2. Structural entropy

The similarity method considered here was originally intro-
duced in Baysa (Baysa et al., 2013).

The technique performs a static analysis of files using the
structural entropy (Sorokin, 2011) to evaluate the similarity among
Android applications.

Unlikely the HMM method, which retrieves hidden states
from opcode sequences, the similarity score is computed di-
rectly on the executable file (i.e. the .dex file in the case of
Android applications); thus the disassembly step is not needed,
and the technique can be applied independently of the spe-
cific executable file format, because it ignores header-specific
information.

The method of structural entropy compares two given files
and produces a similarity measure, i.e. evaluates to which extent
the two files can be considered similar.

The entropy measure provides a sort of signature of a file,
by computing the distribution of bytes within the file. We do
not provide the details of the computation, that can be found
in (Baysa et al., 2013).

The assumption is that different malware samples of the
same family have a similar order of code and data areas; as a
matter of fact each area may be characterized not only by its
length, but also by its homogeneity. We try with this method
to characterize a mobile malware by the complexity of its data
areas. Authors in (Sorokin, 2011) identify as structural entropy
this characteristic of an application; we extend this concept
to mobile environment.

The approach consists of using discrete wavelet trans-
form (DWT) for the segmentation of files into segments of
different entropy levels and using edit distance between se-
quence segments to determine the similarity of the files.

The method comprises two steps: file segmentation and se-
quence comparison.

The first step splits each file into segments of varying entropy
levels using wavelet analysis (Baysa et al., 2013) applied to raw
entropy measurements.

Wavelet analysis (Addision, 2002) is aimed at transform-
ing a signal (a collection of observation points, in our cases the
dataset) into a form that provides greater opportunities of
analysis.

A wavelet is in fact a wavelike function that can be used
to analyze data in different locations and at different scales.

Scaling a wavelet allows to reduce the high frequency of
information present in the original dataset without reducing
the information content and the possibilities of analysis.

Once the files have been segmented, for each given couple
of files to compare, a similarity score is produced by comput-
ing the edit distance between all the corresponding couples
of segments.

Wavelet analysis is useful to locate those areas in a file where
significant changes in entropy occur.

A sliding window is applied to extract the corresponding
series of entropy levels using Shannon formula (Borda, 2011).

After this, we are able to evaluate the similarity between
the two files, using the extracted segments.As in (Sorokin, 2011),
we use the Levenshtein distance, or the edit distance (Baysa
et al., 2013), to determine the scores between two sequences,
that in our case are represented by two files.

Using edit distance we evaluate the minimum number of
edit operations required to transform one sequence into the
other.

The possible edit operations are substitution, insertion, and
deletion. The substitution operation consists of replacing an
element from the first sequence with an element in the second,
while the insertion consists of inserting a new element into
the second sequence. Finally, a deletion operation eliminates
an element from the second sequence.

Greater details can be found in (Baysa et al., 2013).

2.3. Related work

Although HMM has been explored as technique for detecting
malware for personal computers, at the best knwoledge of the
authors only one paper investigated HMM for the detection of
malware for smartphones (Xie et al., 2010) and only one con-
cerns specifically Android platform (Chen et al., 2014).

Chen et al. (Chen et al., 2014) examine Android Intent mes-
sages at run-time, thus they build a hidden Markov model
(HMM) in order to detect apps runtime malicious behavior.The
main difference with our work is that we apply static analy-
sis, i.e. based on opcodes sequences, while Chen et al. (Chen
et al., 2014) use a dynamic analysis, which has the limit of re-
quiring the execution of the app for establishing whether it
is a malware or not. On the contrary static analysis can be
applyed directly on the app. As stated by the authors, their
method did not obtain high performances: 0.7 of precision, while
our method is able to reach 0.96 of precision. Additionally, our
malware dataset was much larger (6,192) than the one used
in reference (Chen et al., 2014).

Xie et al. (Xie et al., 2010) propose a behavior-based malware
detection system named pBMDS, which employs a statistical
approach to learn within cellphones the behavioral differ-
ence between user initiated applications and malware
compromised ones.The novelty of this approach stands in the
fact that it focuses on recognizing non-human behavior instead
of relying on known signatures to identify malware. They
propose a Hidden Markov Model (HMM) based malware de-
tection engine which takes only a limited number of
observations (user inputs) in input and associates process states
(hidden states that cannot be directly observed) and their tran-
sitions with these observations. For the experimentation they
use Linux-based smartphones, thus they do not apply the tech-
nique to Android platform and this is the first difference with
our work. Furthermore they implemented three ad-hoc mali-
cious apps for validating the method, while we used 6,192
malware taken from the real world. Even if they obtain a good
detection rate and a low false positive and negative rate, they
did not test their method with goodware (in order to under-
stand how many trusted applications are recognized as

3c om pu t e r s & s e cu r i t y 6 1 (2 0 1 6) 1 – 1 8

malware), while we validated our method also on trusted
applications.

For completeness, we provide here an overview of the lit-
erature about Android malware detection, while later we discuss
the related literature about HMM, structural entropy, and
machine learning applied to malware detection.

Approaches aiming at identifying the malicious behavior
of the app through sequences of system or API calls have been
proposed by many authors, as in (Canfora et al., 2015; Ki et al.,
2015; Wei et al., 2013). One of the main limits of these ap-
proaches is that the malware writer can alter the original
sequence of system or API calls leaving effective the app, but
making ineffective the detection. SherlockDroid (Apvrille and
Apvrille, 2015) is a classification engine which uses a large set
of features and it is able to recognize specifically unknown
malware, while our aim was also to classify the family a
malware belongs to.

Yerima et al. (Yerima et al., 2015) apply the ensemble
machine learning for detecting Android zero-day attacks, which
leverages an extensive feature-based approach. Even if the
method produced a very high precision (99%), it does not allow
the classification of malware families.

Detecting zero-day attacks on Android platforms is also the
goal of Sayfullina et colleagues (Sayfullina et al., 2015). They
explored several techniques for tackling independence as-
sumptions in Naive Bayes and proposed Normalized Bernoulli
Naive Bayes classifier that resulted in an improved class sepa-
ration and higher accuracy.They conducted a set of experiments
on an up-to-date large dataset of APKs provided by F-Secure
(an anti-malware producer) and achieved 0.1% false positive
rate with overall accuracy of 91%, which is smaller than the
precision reached by our method.

Munoz et al. (Munoz et al., 2015) show that modern Machine
Learning techniques applied to collected metadata from Google
Play can provide a first approach towards the detection of
malware applications, and they further identify which fea-
tures have the highest predictive power among the total. Of
course, the technique can be evaded easily by altering prop-
erly the metadata.

2.3.1. HMM-related methods
Xin (Xin et al., 2012) and Qin (Qin et al., 2011) propose a mobile
malware detector based on an HMM model using system call
traces. In (Xin et al., 2012) authors monitor the keys pressed
and the system function call sequences, where the pressed keys
represent the hidden states while the system call sequences
represent the observations. This proposed solution is evalu-
ated on a single Symbian application, with a specific focus on
the sms sending process, while our solution is aimed at moni-
toring the overall malware behaviour. In (Qin et al., 2011)
researchers propose a prototype of HMM-based detection
system but they do not evaluate it.

Other approaches use dynamic analysis to build the model,
i.e. require the execution of the mobile applications.These ap-
proaches differ from the one proposed in this paper, as we train
the machine learner with models obtained by static analysis.

Authors in (Attaluri et al., 2008) propose HMM to train a
metamorphic malware detector. They evaluate their solution
building a dataset with three different virus construction kits
(VCL32, PS-MPC and NGVCK) to generate multiple variants for

each family, for a total of 240 virus variants and 70 trusted
samples between DLLs and applications. Experiments show a
100% detection rate forVLC32 and PS-MPC, but regarding NGVCK
they do not obtain an useful result.

HMM revealed to be effective (Attaluri et al., 2008) in clas-
sifying virus, but it is ineffective in recognizing a virus when
a quota higher of 35% of dead code (taken from trustful pro-
grams) is added to the virus code.

2.3.2. Entropy-related methods
The similarity method presented in (Baysa et al., 2013) is applied
to binary files, and does not require a pre-processing phase like
disassembling.

In the evaluation the authors consider three metamor-
phic families: 50 viruses generated by G2 virus construction
kit, 50 by NGVCK virus construction kit and a worm family, de-
veloped by authors, able to evade statistical opcode-based
detection techniques (MWOR) (Chouchane et al., 2013).

Authors demonstrate that structural entropy is useful to clas-
sify metamorphic malware of G2 and MWOR family, but at high
percentage of trusted code injected the MWOR family cannot
be detected; results for NGVCK metamorphic family depends
on the number and the length of segments.

Longer files will tend to produce more segments, so the score
is sensitive to file length. Since the NGVCK files differ signifi-
cantly in length, authors conclude that this may be the cause
of lack of success with this family.

Structural entropy showed to be effective (Baysa et al., 2013)
in detecting the families of metamorphic virus, but it re-
vealed to be ineffective with certain virus families: the weakest
point of this technique was that virus may successfully evade
it by morphing the code.

As explained before, the structural entropy score depends
heavily on the segment length and the number of segments
selected, and consequently even the success of this tech-
nique depends on tuning properly these properties.

Ugarte-Pedrero (Ugarte-Pedrero et al., 2012) and colleagues
propose a method to measure entropy for ciphered data.Their
solution is evaluated on a dataset formed with Zeus family
samples, a real malware for PC. They obtain the best results
for a region of 128 bytes with an accuracy of 0.952.

Lyda and Hamrock (Lyda and Hamrock, 2007) discuss the
entropy approach adoption to discovery packed and en-
crypted malware, proposing a set of metrics that analysts can
use to distinguish the packed or encrypted executable from non-
packed or unencrypted ones.

They develop Bintropy, a prototype tool that computes the
entropy score of blocks, the average and the highest entropy
scores from binary files to estimate the likelihood that a binary
file contains compressed or encrypted bytes.Their experimen-
tation was aimed at determining the entropy metrics relying
on the computed difference intervals for the average and the
highest entropy.

At the best of the authors knowledge, the mentioned papers
represent the only work in literature that applies HMMs and
Structural Entropy to malware detection.

2.3.3. ML-related methods
Machine learning is largely applied to detect malware. MDoctor
(Lagerspetz et al., 2014) determines the “health” of a device

4 c om pu t e r s & s e cu r i t y 6 1 (2 0 1 6) 1 – 1 8

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

based on several indicators: the authors use application market
trust, and developer key trust, as parameters for determining
the correlation with known malware.The authors do not discuss
the evaluation of the proposed solution.

Canfora et al. (Canfora et al., 2013) propose a method for
detecting Android malware based on three metrics: the oc-
currences of a specific set of system calls, a weighted sum of
a subset of permissions, and a set of combinations of permis-
sions. They evaluate the proposed solution with a dataset of
400 applications (200 malware and 200 trusted) obtaining a pre-
cision of 0.74. The main differences with this work is the
application of HMM and structural entropy, combined with the
use of static analysis for extracting the features in place of the
dynamic analysis; furthermore, the dataset is significantly
enlarged.

Droid Detective (Liang and Du, 2014) classifies an Android
application by using a technique based on permissions com-
bination. The evaluation with a dataset of 1,260 malware and
741 benign produced a detection rate respectively of 96% and
88% for malware and benign recognition.

Lui et al. (Liu and Liu, 2014) propose another permission-
based approach: they extract requested and used permissions
and make combinations of them to build a J48 classifier to test
their dataset containing 28,548 benign and 1,563 malicious ap-
plications. Their evaluation obtains a 0,898 precision.

Arp et al. (Arp et al., 2014) propose a method to perform a
static analysis of Android applications based on features
extracted from the manifest file and from the disassembled
code (suspicious API calls, network addresses and other).
Their approach uses Support Vector Machines to produce a
detection model, obtaining a precision equal to 0.94 by using
a dataset formed by 123,453 trusted and 5,560 malware
applications.

MAST (Chakradeo et al., 2013) extracts attributes from mobile
applications using the correlation between multiple data (per-
missions, intents, native code information and questionnaire);
the method is tested with 15,000 trusted and 732 malicious
applications.

Yerima et al. (Yerima et al., 2013) present Bayesian classi-
fication models obtained from static analysis. They extract 20
features from 2,000 application (1,000 malware and 1,000
trusted) to build the models, obtaining a precision rate equal
to 0.944.

DroidLegacy (Deshotels et al., 2014) classifies Android
malware extracting families signatures with a precision rate
of 87% from their dataset formed by 1,052 malicious applica-
tions and 48 benign ones.

Apposcopy (Feng et al., 2014) groups Android malware by
using a semantic-based approach, a static taint analysis and
a call graph inter components; authors evaluate their solu-
tion with 1,027 malware obtaining an accuracy of 90%.

DroidDolphin (Wu and Hung, 2014) performs a static and
a dynamic analysis in order to extract features from network
access, api calls, achieving a prediction accuracy of 86.1% with
a balances dataset composed by 32,000 trusted and 32,000 ma-
licious applications using an SVM classifier.The api calls trace
requires the app instrumentation.

AndroSimilar (Faruki et al., 2013) aims to find regions of sta-
tistical similarity starting from the .dex file. Authors obtain an
accuracy of 72.27% using a dataset of 101 malicious applica-

tions. Among the methods appying ML, this is the closest one
to the method we applied in this paper.

Our work enriches the existing literature with a twofold con-
tribution: (i) the study of HMM and structural entropy for
recognizing malware and the family the malware belongs to;
(ii) the validation of the method is carried out on a very large
dataset, including 6,192 malware and 5,560 trusted samples,
recently collected from the real world.

3. Adopting HMM and structural entropy
malware detection for android

In order to use HMM and structural entropy to detect Android
malware, their original application to the PC’s metamorphic
malware detection was modified, as described in this section.

3.1. HMM as malware detection tool

HMM-based malware detection requires a training dataset to
produce a model.

The goal is to train several HMMs to represent the statis-
tical properties of the full malware dataset and of malware
families.

Trained HMMs can then be used to determine if an appli-
cation is similar to malware (families) contained in the training
set.

A model is produced for each family of malware by col-
lecting only the malware belonging to a single family, because
a previous study (Attaluri et al., 2008) demonstrates the effi-
cacy of this choice in metamorphic malware detection.

Alternatively, the HMM detector could be trained by using
the overall malware dataset, without distinguishing among the
families.

Our purpose is to extract the sequence of instructions from
each app of the training dataset which better represents a pos-
sible execution of the app itself.

Once obtained such a sequence, we need to convert it in a
corresponding sequence of symbols. For us, the symbols will
be represented by the opcodes of the instructions.

For obtaining the opcodes, a malware app is first con-
verted into the correspondent smali (Paller, 2015) code.

To do this, we use smali/baksmali (Anon., 2015), the state
of art for apk disassembler.

Smali opcodes found in the applications will constitute the
HMM symbols.

We concatenate the opcode sequences (obtained by all the
malware apps of the dataset) into a unique observation
sequence.

The opcode sequence is obtained with the following process:
we search the entry point of each application in the corre-
spondent Manifest file, we extract all the opcodes of all the
called methods, in sequence, starting from the entry point.

When we find an “invoke” instruction, we jump to the
invoked method, and collect all the opcodes of all the instruc-
tions forming that method.

The process stops when we reach a class of the Android
framework, or when we reach the maximum recursion level,
fixed to 4. This threshold was established for convenience

5c om pu t e r s & s e cu r i t y 6 1 (2 0 1 6) 1 – 1 8

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

reason, as a tradeoff between efficacy (as complete sequence
of collected instructions as possible) and the cost of compu-
tation. The complete process is represented in Fig. 2.

Once extracted the opcode sequence from each applica-
tion, the HMM detector must be trained: all the opcode
sequences obtained by all the apps are merged together to form
one file, i.e. a single sequence of opcodes.

In order to train the HMM detector, we need to fix the
number of the hidden states (of the generated HMMs).

Thus we apply the Baum-Welch algorithm (Attaluri et al.,
2008) for finding the values of the unknown parameters of the
model. Each time the number of hidden states changes, the
algorithm is run again.

After this step, we compare a generic opcode sequence (cor-
responding to the app to classify) with the opcode sequence
of the learned model: we use the Forward algorithm (Attaluri
et al., 2008) for finding the likelihood of the sequence, i.e. the
probability that the (learned) model generates the sequence
to classify. If this is true, then the app is considered a malware
instance. Of course, the “definition” of a malware depends
strictly on the used training dataset.

We trained our HMMs using different numbers of states and
examined the resulting probabilities to deduce which fea-
tures the states represent.The number of hidden states N that
we tested are N = 3, 4, 5.

3.2. Entropy-based detection

The entropy-based method is based on the estimation of struc-
tural entropy of an Android executable (.dex file).

The first step is the extraction of an entropy series: once
the .dex file has been divided into blocks of fixed size, we
compute the Shannon entropy for each block.

This is the first representation of .dex file; in order to obtain
the segments of the file, we use the wavelet transform which
gives an useful representation of the entropy series, with ap-
proximation and detail coefficients.

Once two parameters, minimum and maximum scale of the
wavelet transform, have been selected, we use the detail co-
efficients to detect the discontinuities in the entropy series and
extract the segments:

• the length of each segment is represented by the distance
between two consecutive discontinuities;

• the entropy value of each segment is the approximation
value of the entropy series between the discontinuities.

The output of the segmentation phase is represented by the
list of segments that represent the different entropy areas in
.dex file.

The second phase of the method is the comparison between
the segments of two .dex files to compute a similarity score.

As we mentioned before, the similarity score is based on
the Levenshtein distance. This value represents the percent-
age of similarity between two .dex files based on the
corresponding entropy areas.

4. Experimental evaluation: study definition

In this section we discuss the experiments we carried out to
evaluate the effectiveness of the HMM and structural entropy
in detecting Android malware and correctly classifying the
family a malware belongs to.

4.1. Research questions

The paper poses four research questions:

• RQ1: is an HMM based detector able to discriminate a
malware from a trusted application for smartphones?

• RQ2: is an HMM based detector able to identify the family
of a malware application?

• RQ3: is the structural entropy similarity able to discrimi-
nate a malware from a trusted application?

• RQ4: is the structural entropy similarity able to identify the
family of a malware application?

4.2. The dataset

A dataset made of 5560 trusted and 5560 malware Android ap-
plications was collected: trusted applications by different
categories (call & contacts, education, entertainment, GPS &
travel, internet, lifestyle, news & weather, productivity, utili-
ties, business, communication, email & SMS, fun & games,
health & fitness, live wallpapers, personalization) were down-
loaded from Google Play (and then controlled by Google Bouncer,
a Google service that checks each app for malicious behaviour
before publishing it on the official market (Busticati Productions
Presents, 2015)) from July 2014 to September 2014, while
malware applications of different nature and malicious intents
(premium call & SMS, selling user information, advertise-
ment, SMS spam, stealing user credentials, ransom) were taken
from Drebin Dataset (Arp et al., 2014; Spreitzenbarth et al., 2013).

Every family contains samples which have in common
several characteristics, like payload installation, the kind of

Fig. 2 – State diagram of opcode sequence extraction.

6 c om pu t e r s & s e cu r i t y 6 1 (2 0 1 6) 1 – 1 8

think
高亮

think
高亮

attack and events that trigger malicious payload (Canfora et al.,
2015; Zhou and Jiang, 2012) (Table 1).

Furthermore we test our methods using a dataset contain-
ing 632 real world samples labelled as ransomware, koler, locker,
fbilocker and scarepackage (Andronio et al., 2015). The
ransomware dataset cointains samples appeared in Decem-
ber 2014–January 2015.

The full malware dataset is composed of 6192 samples.
In order to answer to RQ1 and RQ3 we use the full dataset;

for RQ2 and RQ4 we selected the 11 families owning the great-
est number of samples (the full malware dataset contains
samples from 179 families), including the ransomware samples,
in order to obtain more significant and reliable outcomes.

4.3. The analysis method

We extracted 3 features (f1, f2, f3) with the HMM method, and
one feature (f4) with the structural-entropy method.

HMM training was accomplished by using cross-validation,
specifically the five-fold cross validation.With the five-fold cross
validation, we divide the data set into five equalized subsets.
Each time we train a model, we choose one of the subsets as
the test set and train the model using the dataset formed
merging the other four subsets. Because the dataset used in
the test set is not used during the training phase, we can use
it to evaluate the performance of the model over unseen in-
stances of the same virus. By repeating this process five times
and choosing a different subset as the test set each time, we
can produce five different models with the same dataset.

Table 2 shows the number of samples used in the training
set and in the testing set for each family considered.

We considered the full malware dataset to answer RQ1 and
the remaining 10 subsets shown in Table 1 and the ransomare
dataset to answer RQ2. The training process can be summa-
rized in this way:

1. given a data set consisting of different malware instances,
we pick one subset as the test set and use the remaining
four subsets for the training;

2. train HMM for the sequences present in the training set until
the log likelihood of the training sequence converges or a
maximum number of iterations is reached;

3. compute the score, i.e., the log likelihood of malware in the
test set and other files in the comparison set;

4. repeat from (1), choosing a different subset as the test set,
until all five subsets have been chosen.
Each training was performed for N = 3, 4, 5 hidden states.

When the training process is over, every app in the dataset
is associated to a score for the subset considered.

Using HMM with 3, 4 and 5 hidden states, as result we have
three scores, i.e. three features for every app (f1 = HMM score
with 3 hidden states, f2 = HMM score with 4 hidden states,
f3 = HMM score with 5 hidden states).

With regard to the structural entropy, we want to evaluate
the similarity of an application X with a population Xp; we first
need to compute the structural entropy of X and the struc-
tural entropy of Xp. Once we have these two values, we can
compute the similarity between them and obtain an evalua-
tion of the similarity between (the structural entropy of) X and
(the structural entropy of) Xp. The structural entropy of Xp is
the arithmetic mean of the structural entropies of all the ap-
plications Xpi belonging to the population Xp.

In particular, for answering RQ3 we evaluated:

• the similarity between each malware application (X) and
the full malware dataset (Xp); and

• the similarity between each trusted application (X) and the
full trusted dataset (Xp).

In order to answer RQ4 we computed:

Table 1 – Number of samples for family in Drebin dataset with details of the installation method (standalone,
repackaging, update), the kind of attack (trojan, botnet), the events that trigger the malicious payload and a brief family
description.

Family Inst. Attack Activation Samples Description

FakeInstaller s t,b 925 Server-side polymorphic family
Plankton s,u t,b 625 It uses class loading to forward details
DroidKungFu r t boot,batt,sys 667 It installs a backdoor
GinMaster r t boot 339 Malicious service to root devices
BaseBridge r,u t boot,sms,net,batt 330 It sends information to a remote server
Adrd r t net,call 91 It compromises personal data
Kmin s t boot 147 It sends info to premium-rate numbers
Geinimi r t boot,sms 92 First Android botnet
DroidDream r b main 81 Botnet, it gained root access
Opfake r t 613 First Android polymorphic malware

Table 2 – The number of samples for each family
considered in the HMM experiments.

Family Training set Test set

FakeInstaller 740 185
Plankton 500 125
DroidKungFu 534 133
GinMaster 272 67
BaseBridge 264 66
Adrd 73 18
Kmin 118 29
Geinimi 74 18
DroidDream 65 16
Opfake 491 122
Ransomware 506 126
Total malware 4954 1238

The test set is approximately the 20% of subset considered.

7c om pu t e r s & s e cu r i t y 6 1 (2 0 1 6) 1 – 1 8

• the similarity between each malware application (X) and
the full set of applications belonging to the same family (Xp).

When the process is over, every app in the dataset is as-
sociated to a score for the subset considered (f4 = structural
entropy, as defined previously).

Similarly to HMM, also for the structural entropy we con-
sidered the full malware dataset to answer RQ3 and the 11
subsets in Table 1 to answer RQ4: the reason for this choice
has been explained previously.

Two kinds of analysis were performed: hypothesis testing
and classification.

The test of hypothesis was aimed at understanding whether
the features the model consists of are able to produce a sta-
tistically significant difference between the two samples:
malware and trusted.

The classification was aimed at determining whether the
features extracted allowed to associate correctly an applica-
tion to the malware class or the trusted class, and whether the
features allowed to correctly associate each malware to the
family it really belongs to.

After extracting the features we tested the following null
hypothesis:

H0. Malware and trusted applications have similar values of
the proposed features.

The H0 states that, given the i-th feature fi, if fiT denotes the
value of the feature fi measured on a trusted application, and
fiM denoted the value of the same feature measured on a ma-
licious application:

σ σf fiT iM() = () = …for i 1 4, ,

being σ(fi) the means of the (control or experimental) sample
for the feature fi.

The null hypothesis was tested with Mann–Whitney (with
the p-level fixed to 0.05) and with Kolmogorov–Smirnov Test
(with the p-level fixed to 0.05). Two different tests of hypoth-
eses were performed in order to have a stronger internal validity.

The classification analysis was aimed at assessing whether
the features where able to correctly classify malicious and
trusted applications.

The algorithms were applied to each of the four features.
Six algorithms of classification were used: J48, LadTree,

NBTree, RandomForest, RandomTree, RepTree. Similarly to hy-
pothesis testing, different algorithms for classification were used
for strengthening the internal validity.

5. Analysis of results

The hypothesis test produced evidence that the considered fea-
tures have different distributions in the control and
experimental sample, as shown in Table 3. As a matter of fact,
all the p-values are under 0.001.

Summing up, the null hypothesis can be rejected for the
features f1, f2, f3 and f4. According to the hypothesis tests, both
the two methods, HMM and structural entropy are able to dis-
tinguish a malware from a trusted app.

With regard to classification, we define the training set T,
consisting of a set of labeled applications (AUA, l) where the
label l ε {trusted, malicious}. For each AUA, i.e. application under
analysis, we built a feature vector FεRy, where y is the number
of the features used in training phase (1 ≤ y ≤ 4).

To answer RQ1 we performed three different classifica-
tions, each one with a single feature: f1, f2 and f3 (y = 1), while
for RQ2 we performed ten classifications with f1m, f2m and f3m
where m represents the malware family (0 < m < 11), in this case
the label m ε {FakeInstaller, Plankton, DroidKungFu, GinMaster,
BaseBridge, Adrd, KMin, Geinimi, DroidDream, Opfake, Ransomware}
(each classification is accomplished with a single feature, as
in the previous case).

To answer RQ3, we performed the same classification as for
RQ1; the only difference is the feature used: in this case we
used the structural entropy feature (f4).

To answer RQ4 we performed eleven classifications, each
one with the structural entropy feature (f4) computed for the
selected 10 malware families and ransomware dataset.

We used the k-fold cross-validation: the dataset was ran-
domly partitioned into k subsets of data. A single subset of the
dataset was retained as the validation data for testing the
model, while the remaining k − 1 subsets were used as train-
ing data.We repeated this process k times, each of the k subsets
of data was used once as validation data. To obtain a single
estimate we computed the average of the k results from the
folds.

Specifically, we performed a 10-fold cross validation.
Results are shown in Tables 4 and 5.The rows represent the

features, while the columns represent the values of the three
metrics used to evaluate the classification results (precision,
recall and roc-area) for the recognition of malware and trusted
samples. The Recall has been computed as the proportion of
examples that were assigned to class X, among all examples
that truly belong to the class, i.e. how much part of the class
was captured. The recall is defined as:

Recall
tp

tp fn
=

+

where tp indicates the number of true positives and fn is the
number of false negatives.

The Precision has been computed as the proportion of the
examples that truly belong to class X among all those which
were assigned to the class, i.e.:

Precision
tp

tp fp
=

+

where fp indicates the number of false positives.

Table 3 – Results of the test of the null hypothesis H0.

Variable Mann–
Whitney

Kolmogorov–
Smirnov

f1 0.000000 p < .001
f2 0.000000 p < .001
f3 0.000000 p < .001
f4 0.000000 p < .001

8 c om pu t e r s & s e cu r i t y 6 1 (2 0 1 6) 1 – 1 8

The Roc Area is the area under the ROC curve (AUC) and
is defined as the probability that a randomly chosen positive
instance is ranked above randomly chosen negative one.

The classification analysis with the HMMs and structural
entropy features suggests several considerations. First of all,
HMM outperforms structural entropy in discriminating malware
from trusted, both in terms of precision and recall.

The precision obtained with the HMM based classifier ranges
from 0.933 to 0.96, while the recall spans between 0.97 to 0.998;
on the contrary, the entropy based classifier’s precision has
values all around 0.7, while the greatest recall is 0.8.

It seems that the performances of the HMM based detec-
tor could depend on the number of hidden states, as precision
increases with the number of hidden states. The ROC AREA
values signal that the accuracy is fair, but it will be desirable
to have a value of ROC AREA of 0.9 for having a perfect test.

However ,the differences in performances among 3, 4 and
5 states of the HMM detector are not that significant.This result
is consistent with the one obtained with metamorphic malware
(Attaluri et al., 2008).

Regarding the detection of the malware’s families, whose
results are reported in Table 5, the structural entropy reveals
to be the best feature to use in the classification, reaching in
many cases values of precision greater than 0.9. This is not an
unexpected outcome, as the structural entropy is a measure
of similarity between executable files, and apps belonging to
the same family are supposed to share some parts of the code.
Moreover, structural entropy seems to be very effective for some
families, like Opfake, Kmin, DroidKungFu, and less for others, but
even the smallest values of precision and recall remain enough

acceptable, respectively 0.723 and 0.59. It is important to observe
that the values of ROC AREA for the structural entropy are high,
in many cases over 0.9. So the accuracy of the classification
is perfect for the structural entropy, except for Gemini and
DroidDream families.

HMM is not effective for detecting malware families, even
if the values of precision and recall in some cases are close
to 0.8, which represents not a totally bad performance. It is
worth noticing that in this case the ROC AREA is close to 0.9
for many tests which use HMM. This implies that for recog-
nizing malware families, the tests with HMM have a good
accuracy. The structural entropy performs better in recogniz-
ing the malware families with polymorphic malware: as a
matter of fact the best outcomes are obtained with Opfake, that
is polymorphic. This is consistent with the results of similar
studies on PC’s viruses (Attaluri et al., 2008; Baysa et al., 2013).

In the following, we respond in detail to the research ques-
tions and support answers with descriptive statistics and the
results of the classification.

5.1. RQ1: is an HMM based detector able to discriminate
a malware from a trusted application for smartphones?

For answering RQ1 it is helpful to examine the scatter plots
for HMM likelihood, as illustrated in Figs. 3–5.

From the plotted data it emerges that using 5 hidden states
rather than 3 and 4, the HMM detector is more effective, since
the distinction between the region of malware (in red) and the
region of trusted (in blue) is greater. However, in all the ana-
lyzed cases (HMM with 3, 4 and 5 hidden states) the scatter
plots show that there is a clear separation between the group
of the malware samples and that of the trusted samples.

These results suggest that the best classification will be ob-
tained with a 5 hidden states HMM detector.

The classification analysis, as shown in Table 6, confirms
our expectations that HMM can provide very good indicators
to discriminate a malware from a trusted Android application.

As a matter of fact we obtained a precision of 0.949 with
RandomTree algorithm regarding f1 (HMM with 3 hidden states),
a precision of 0.951 with RandomTree algorithm regarding f2

(HMM with 4 hidden states) and a precision of 0.96 with
RandomTree algorithm using f3 feature (HMM with 5 hidden
states).

RQ1 Summary: the classification analysis shows that the f3

feature (HMM with 5 hidden states) is the best in class to discern
a malware Android application from a trusted one, with a pre-
cision of 0.96 obtained with the algorithm RandomForest.

5.2. RQ2: is an HMM based detector able to identify the
family of a malware application?

Figs. 6–8 show the box plots for the malware families analyzed.
By looking at the box plots it seems that there are not sub-

stantial differences among different families of malware: this
result will be reflected into the classification. There is a little
increment of likelihood value in the box plot obtained by train-
ing an HMM with 5 hidden states, even if this increment is
minimal.

Table 4 – Precision, Recall and RocArea of 3-HMM (f1),
4-HMM (f2), 5-HMM (f3) detector and structural entropy
(f4) based detector for malware classification with the
algorithms J48, LadTree, NBTree, RandomForest,
RandomTree and RepTree.

Feature Algorithm Precision Recall RocArea

f1 J48 0.933 0.997 0.581
LADTree 0.933 0.997 0.717
NBTree 0.933 0.997 0.727
RandomForest 0.948 0.97 0.722
RandomTree 0.949 0.97 0.683
RepTree 0.935 0.995 0.688

f2 J48 0.935 0.996 0.579
LADTree 0.935 0.997 0.712
NBTree 0.935 0.996 0.727
RandomForest 0.948 0.97 0.706
RandomTree 0.951 0.97 0.674
RepTree 0.937 0.995 0.735

f3 J48 0.953 0.996 0.586
LADTree 0.951 0.998 0.713
NBTree 0.957 0.996 0.727
RandomForest 0.96 0.968 0.707
RandomTree 0.955 0.968 0.671
RepTree 0.952 0.994 0.739

f4 J48 0.725 0.525 0.702
LADTree 0.783 0.41 0.725
NBTree 0.719 0.515 0.701
RandomForest 0.772 0.826 0.715
RandomTree 0.777 0.825 0.723
RepTree 0.747 0.697 0.712

9c om pu t e r s & s e cu r i t y 6 1 (2 0 1 6) 1 – 1 8

Table 5 – Precision, Recall and RocArea obtained by classifying malicious families dataset, with the algorithms J48,
LadTree, NBTree, RandomForest, RandomTree and RepTree.

Feature Algorithm Precision Recall RocArea

f1 f2 f3 f4 f1 f2 f3 f4 f1 f2 f3 f4

FakeInstaller J48 0.706 0.609 0.695 0.854 0.698 0.731 0.704 0.767 0.886 0.881 0.887 0.938

LADTree 0 0.115 0.119 0.854 0 0.1 0.069 0.767 0 0.603 0.588 0.938

NBTree 0.729 0.737 0.703 0.854 0.233 0.222 0.229 0.767 0.712 0.707 0.72 0.938

RandomForest 0.722 0.739 0.741 0.854 0.774 0.777 0.78 0.767 0.886 0.888 0.888 0.938

RandomTree 0.73 0.735 0.744 0.854 0.776 0.78 0.78 0.767 0.885 0.888 0.887 0.938

RepTree 0.609 0.625 0.606 0.854 0.588 0.591 0.593 0.767 0.88 0.883 0.885 0.938

Plankton J48 0.649 0.671 0.645 0.734 0.608 0.698 0.696 0.694 0.895 0.889 0.889 0.821

LADTree 0 0.091 0 0.734 0.608 0.698 0.696 0.694 0.895 0.889 0.889 0.821

NBTree 0.649 0.629 0.649 0.734 0.209 0.178 0.211 0.694 0.722 0.721 0.727 0.821

RandomForest 0.663 0.674 0.677 0.734 0.667 0.675 0.674 0.694 0.897 0.889 0.888 0.821

RandomTree 0.67 0.675 0.683 0.734 0.683 0.681 0.68 0.694 0.889 0.888 0.887 0.821

RepTree 0.605 0.632 0.598 0.734 0.606 0.604 0.609 0.694 0.896 0.893 0.891 0.821

DroidKungFu J48 0.65 0.661 0.646 0.88 0.744 0.762 0.733 0.98 0.888 0.708 0.866 0.928

LADTree 0.094 0.114 0.099 0.774 0.602 0.629 0.913 0.974 0.566 0.569 0.582 0.805

NBTree 0.113 0.134 0.119 0.918 0.661 0.666 0.941 0.93 0.7 0.701 0.703 0.891

RandomForest 0.775 0.772 0.776 0.916 0.778 0.794 0.775 0.93 0.887 0.895 0.887 0.918

RandomTree 0.772 0.768 0.78 0.918 0.78 0.796 0.783 0.93 0.879 0.885 0.88 0.891

RepTree 0.506 0.502 0.502 0.876 0.677 0.71 0.679 0.978 0.886 0.889 0.885 0.907

GinMaster J48 0.685 0.72 0.748 0.834 0.688 0.706 0.699 0.865 0.884 0.883 0.887 0.821

LADTree 0 0.139 0.089 0.834 0 0.042 0.009 0.865 0 0.62 0.631 0.821

NBTree 0.701 0.761 0.732 0.834 0.224 0.217 0.214 0.865 0.699 0.705 0.714 0.821

RandomForest 0.766 0.76 0.777 0.834 0.768 0.76 0.775 0.865 0.883 0.881 0.888 0.821

RandomTree 0.767 0.775 0.776 0.834 0.771 0.773 0.779 0.865 0.883 0.884 0.887 0.821

RepTree 0.607 0.646 0.644 0.834 0.597 0.597 0.596 0.865 0.884 0.882 0.887 0.821

BaseBridge J48 0.627 0.636 0.651 0.89 0.727 0.73 0.741 0.799 0.886 0.889 0.891 0.938

LADTree 0.344 0.107 0.2 0.864 0.024 0.018 0.015 0.841 0.64 0.643 0.647 0.935

NBTree 0.714 0.756 0.958 0.887 0.211 0.214 0.224 0.59 0.683 0.682 0.693 0.709

RandomForest 0.759 0.775 0.786 0.864 0.769 0.775 0.793 0.841 0.883 0.887 0.89 0.935

RandomTree 0.766 0.788 0.785 0.869 0.771 0.775 0.783 0.841 0.887 0.892 0.896 0.923

RepTree 0.594 0.608 0.585 0.869 0.629 0.637 0.628 0.778 0.887 0.892 0.896 0.94

Adrd J48 0.638 0.609 0.643 0.763 0.735 0.731 0.745 0.307 0.89 0.881 0.886 0.863

LADTree 0 0 0.099 0.875 0 0 0.01 0.782 0 0 0.632 0.779

NBTree 0.758 0.785 0.739 0.875 0.268 0.267 0.274 0.782 0.703 0.704 0.707 0.779

RandomForest 0.77 0.772 0.782 0.875 0.775 0.765 0.77 0.782 0.889 0.882 0.885 0.779

RandomTree 0.778 0.783 0.788 0.875 0.777 0.767 0.77 0.782 0.886 0.882 0.883 0.779

RepTree 0.581 0.622 0.593 0.875 0.638 0.644 0.637 0.747 0.886 0.885 0.887 0.779

Kmin J48 0.725 0.732 0.685 0.976 0.68 0.688 0.68 0.752 0.889 0.885 0.885 0.85

LADTree 0 0.11 0 0.974 0 0.05 0 0.777 0 0.634 0.624 0.991

NBTree 0.633 0.592 0.538 0.978 0.215 0.167 0.157 0.702 0.715 0.714 0.722 0.817

RandomForest 0.739 0.742 0.745 0.974 0.771 0.759 0.764 0.777 0.887 0.88 0.883 0.991

RandomTree 0.738 0.744 0.745 0.778 0.775 0.764 0.768 0.865 0.885 0.887 0.886 0.991

RepTree 0.614 0.647 0.573 0.946 0.58 0.585 0.605 0.747 0.887 0.887 0.886 0.988

Geinimi J48 0.608 0.635 0.645 0.723 0.687 0.684 0.694 0.879 0.882 0.881 0.88 0.665

LADTree 0.255 0.116 0.131 0.725 0.01 0.012 0.035 0.875 0.592 0.593 0.622 0.665

NBTree 0.611 0.638 0.607 0.723 0.234 0.222 0.229 0.879 0.703 0.706 0.716 0.665

RandomForest 0.636 0.66 0.645 0.723 0.662 0.76 0.754 0.879 0.88 0.881 0.878 0.665

RandomTree 0.639 0.641 0.633 0.725 0.634 0.765 0.762 0.875 0.879 0.88 0.878 0.665

RepTree 0.633 0.611 0.596 0.723 0.577 0.571 0.582 0.879 0.881 0.884 0.884 0.665

DroidDream J48 0.67 0.67 0.654 0.756 0.708 0.712 0.885 0.64 0.885 0.886 0.886 0.665

LADTree 0.182 0.67 0.106 0.756 0.011 0.13 0.023 0.64 0.584 0.609 0.587 0.665

NBTree 0.602 0.649 0.707 0.756 0.22 0.234 0.22 0.64 0.345 0.719 0.729 0.665

RandomForest 0.664 0.672 0.676 0.756 0.773 0.77 0.775 0.64 0.885 0.884 0.877 0.665

RandomTree 0.661 0.679 0.7 0.756 0.774 0.772 0.777 0.64 0.884 0.884 0.886 0.665

RepTree 0.595 0.59 0.575 0.756 0.616 0.607 0.613 0.64 0.885 0.884 0.888 0.665

Opfake J48 0.55 0.58 0.64 0.941 0.66 0.70 0.70 0.871 0.78 0.78 0.78 0.959

LADTree 0.62 0.47 0.76 0.941 0.5 0.5 0.51 0.871 0.74 0.74 0.74 0.955

NBTree 0.602 0.67 0.79 0.934 0.53 0.54 0.54 0.871 0.64 0.64 0.67 0.958

RandomForest 0.64 0.78 0.80 0.941 0.68 0.68 0.74 0.871 0.84 0.84 0.84 0.955

RandomTree 0.77 0.79 0.79 0.941 0.7 0.71 0.7 0.871 0.84 0.84 0.85 0.943

RepTree 0.63 0.66 0.66 0.941 0.6 0.67 0.66 0.871 0.88 0.88 0.882 0.959

Ransomware J48 0.724 0.801 0.824 0.948 0.766 0.704 0.72 0.896 0.785 0.785 0.785 0.979

LADTree 0.781 0.754 0.736 0.961 0.545 0.655 0.654 0.879 0.724 0.743 0.754 0.962

NBTree 0.72 0.69 0.699 0.954 0.602 0.589 0.702 0.89 0.76 0.76 0.79 0.972

RandomForest 0.634 0.723 0.799 0.931 0.654 0.608 0.714 0.902 0.803 0.839 0.882 0.975

RandomTree 0.77 0.79 0.796 0.918 0.712 0.711 0.743 0.935 0.812 0.801 0.801 0.967

RepTree 0.639 0.643 0.646 0.942 0.612 0.627 0.637 0.872 0.799 0.808 0.817 0.932

10 c om pu t e r s & s e cu r i t y 6 1 (2 0 1 6) 1 – 1 8

We, in fact, obtained poor performances in classifying the
malware families by using the f3 feature (HMM with 5 hidden
states):

• a precision of 0.744 with RandomTree algorithm to recog-
nize FakeInstaller family;

• a precision of 0.683 with RandomTree algorithm to recog-
nize Plankton family;

• a precision of 0.776 with RandomForest algorithm to rec-
ognize DroidKungFu family;

• a precision of 0.777 with RandomForest algorithm to rec-
ognize GinMaster family;

• a precision of 0.786 with RandomForest algorithm to rec-
ognize BaseBridge family;

• a precision of 0.788 with RandomTree algorithm to recog-
nize Adrd family;

Fig. 3 – Comparison of malware (red) and trusted (blue) datasets classified with 3-HMM.

Fig. 4 – Comparison of malware (red) and trusted (blue) datasets classified with 4-HMM.

11c om pu t e r s & s e cu r i t y 6 1 (2 0 1 6) 1 – 1 8

• a precision of 0.745 with RandomTree and RandomForest
algorithms to recognize KMin family;

• a precision of 0.645 with J48 and RandomForest algo-
rithms to recognize Geinimi family;

• a precision of 0.707 with NBTree algorithm to recognize
DroidDream family;

Fig. 5 – Comparison of malware (red) and trusted (blue) datasets classified with 5-HMM.

Table 6 – The performance evaluation of Structural
Entropy method.

Contribute Entropy

tescore 3.37891 s
teclass 0.47 s
tetotal 3.84891 s

Fig. 6 – Boxplots of 3-HMM values for malware families.

12 c om pu t e r s & s e cu r i t y 6 1 (2 0 1 6) 1 – 1 8

• a precision of 0.8 with RandomForest algorithm to recog-
nize Opfake family; and

• a precision of 0.824 with J48 algorithm to recognize
Ransomware family.

RQ2 Summary: with regard to the classification analysis, we
can conclude that similarly to RQ1, the f3 feature (HMM with
5 hidden states) is the best one among the HMM-based fea-
tures for classifying the malware families.

Fig. 7 – Boxplots of 4-HMM values for malware families.

Fig. 8 – Boxplots of 5-HMM values for malware families.

13c om pu t e r s & s e cu r i t y 6 1 (2 0 1 6) 1 – 1 8

We obtain a range of precision varying from 0.645 to 0.8,
which cannot be considered a good result as well.

We conclude that the HMM-based features present a fair
precision value to classify mobile malware families.

5.3. RQ3: is the structural entropy similarity able to
discriminate a malware from a trusted application?

Fig. 9 shows the box plots of the structural entropy values ob-
tained from the malware and trusted dataset. The complete
overlap of the malware box plot with a portion of the trusted
box plot is a clear symptom that we should not expect a high
precision value in the classification.

Classification analysis confirms our expectations: the f4

(structural entropy) feature obtains a maximum precision value
of 0.783 with the classification algorithm LADTree. The result
is fair, but it is worse than the HMM-based features.

RQ3 Summary: the f4 (structural entropy) feature cannot be
considered a good indicator to discriminate a mobile malware

application from a trusted one, as it presents a low precision
value.

5.4. RQ4: is the structural entropy similarity able to
identify the family of a malware application?

Fig. 10 shows the box plots regarding the structural entropy
value of the eleven malware families analyzed.

Unlike HMMs, the comparison among the box plots of the
entropy values of the different malware families shows a sig-
nificant difference among families. This makes us to expect
that the structural entropy could be effective to correctly iden-
tify the family a malware belongs to. This will emerge, as a
matter of fact, with the classification.

We obtain the following values when classifying the malware
families by using the f4 (structural entropy) feature:

• a precision of 0.854 with all the six classification algo-
rithms to recognize FakeInstaller family;

• a precision of 0.734 with all the six classification algo-
rithms to recognize Plankton family;

• a precision of 0.918 with NBtree and RandomTree algo-
rithms to recognize DroidKungFu family;

• a precision of 0.834 with all the six classification algo-
rithms to recognize GinMaster family;

• a precision of 0.89 with J48 algorithm to recognize BaseBridge
family;

• a precision of 0.875 with LADTree, NBTree, RandomForest,
RandomTree and RepTree algorithms to recognize Adrd
family;

Fig. 9 – Structural entropy boxplots of malware and trusted
dataset.

Fig. 10 – Structural entropy boxplots of malware families.

14 c om pu t e r s & s e cu r i t y 6 1 (2 0 1 6) 1 – 1 8

• a precision of 0.978 with NBTree algorithm to recognize KMin
family;

• a precision of 0.725 with LADTree and RandomTree algo-
rithms to recognize Geinimi family;

• a precision of 0.756 with all the six classification algo-
rithms to recognize DroidDream family;

• a precision of 0.941 with all the six classification algo-
rithms to recognize Opfake family; and

• a precision of 0.961 with LADTree classification algorithm
to recognize Ransomware family.

RQ4 Summary: the f4 (structural entropy) feature is the best
in class to identify the malware family, with a precision from
0.725 to 0.978, respectively in case of Geinimi family and KMin
family.

6. Performance evaluation

In this section we discuss the performances of the structural
entropy and the HMM based detectors.

In order to measure performances of the two methods, we
used the time.clock() Python function that returns the proces-
sor time.The processor time is the percentage of elapsed time
that the processor spends to execute a non-idle thread, i.e. the
cpu-time measured in seconds that the process requires to
perform the computation.

The machine used to run the scripts and to take measure-
ments was an Intel Core i5 desktop with 4 gigabyte RAM,
equipped with Linux Mint 15.

We consider the overall time to analyze a sample as the sum
of different contributions.

Regarding the structural entropy method we consider two
different contributions to the overall time:

1. the average time to extract and compare the segments of
two .dex files when computing the similarity score, i.e. tescore;

2. the time to classify the similarity scores, i.e. the f4 feature.
We refer to this value with teclass.

Table 6 shows the cpu-time required to compute tescore and
teclass. We notice that most cpu-time is used for the extraction
and comparison. We compute the total time to evaluate a
sample with the structural entropy method (tetotal) as the sum
of tescore and teclass.

Regarding the HMM method we distinguish the following
contributions in order to compute the overall time:

1. the average time required to extract the sequence of in-
structions from each app of the training dataset, i.e. thseq;

2. the time required to learn the HMM with 3 hidden states
(th3), with 4 hidden states (th4) and with 5 hidden states (th5);

3. the average time required to evaluate the trained HMM, i.e.
theval; and

4. the time required to classify the features extracted (i.e., f1,
f2 and f3 features). We refer to this value with thclass.

We compute the total cpu time required for HMM methods
(thtotal) as the sum of contributes thseq, th3 (when measuring HMM
with 3-hidden states), th4 (when measuring HMM with 4-hidden

states), th5 (when measuring HMM with 5-hidden states), and
thclass.

Table 7 shows the HMM methods performance with 3 hidden
states.

The most intensive task from the cpu point of view is rep-
resented by the time required to learn the HMM, while the
evaluation phase requires 0.0291 seconds to test a new sample.

Table 8 shows the HMM methods performance with 5 hidden
states.

The most intensive task for the cpu, when testing HMM with
4-hidden states, is represented by the time required to learn
the HMM, while the evaluation phase requires 0.0339 seconds
to test a new sample.

Table 9 shows the HMM methods performance with 5 hidden
states.

Even with 5-hidden states, the most intensive task is rep-
resented by the time required to learn the HMM, while the
evaluation phase require 0.0349 seconds to test a new sample.

Table 10 reports the comparison in terms of total cpu-
time required to test a new sample when using structural
entropy and HMM with 3, 4 and 5 hidden states.

We highlight that the less expensive method in terms of
cpu time is represented by the structural entropy method that
requires 3.84891 seconds in average to classify a new sample,
while the HMM method requires more computational time than
structural entropy, and when increasing the number of hidden
states, the computational time also increases (from 613 seconds
to learn an HMM with 3-hidden states to 1111 seconds to learn
a HMM with 5-hidden states). The evaluation time for HMM

Table 7 – The performance evaluation of HMM method
when using 3-hidden states.

Contribute HMM3

thseq 3.5607 s
th3 609.2059 s
theval 0.0291 s
thclass 0.47 s
thtotal 613, 2657 s

Table 8 – The performance evaluation of HMM method
when using 4-hidden states.

Contribute HMM4

thseq 3.5607 s
th3 691.1233 s
theval 0.0339 s
thclass 0.47 s
thtotal 695, 1879 s

Table 9 – The performance evaluation of HMM method
when using 5-hidden states.

Contribute HMM5

thseq 3.5607 s
th3 1107.3799 s
theval 0.0349 s
thclass 0.47 s
thtotal 1111.4455 s

15c om pu t e r s & s e cu r i t y 6 1 (2 0 1 6) 1 – 1 8

is quite similar (from 0.0291 seconds using 3-hidden states to
0.0349 seconds when using 5-hidden states).

Furthermore, we observe that the classification time is neg-
ligible in both methods; indeed it requires just 0.47 seconds
for each method we measured.

7. Threats to validity

This section describes the threats that can affect the validity
of our evaluation, known as: construct, internal reliability, and
external validity.

7.1. Construct validity

Threats to construct validity may be related to imprecisions
in measurements.

A construct validity factor in our study is represented by
the restricted samples of our dataset; in order to mitigate this
factor we used the 10 cross-validation, every classification is
repeated for 10 times using testing set formed by different
samples in order to evaluate every sample forming the full
dataset.

7.2. Internal validity

Threats to internal validity regard the extent to which a causal
conclusion based on a study is warranted.

Our results are strongly dependent by the machine learn-
ing algorithms used: to mitigate this factor we have used six
different machine learning algorithms: J48, LADTree, NBTree,
RandomForest, RandomTree and RepTree.

7.3. Reliability validity

Threats to reliability validity concern the capability of repli-
cating this empirical study and obtaining the same results.

Scripts adopted to run the experiments are available on
http://www.gerardocanfora.net/hmm-replication-package/HMM
_Entropy.tar.gz. The malware dataset is publicly available
for research purpose, at the following URL: http://user
.informatik.uni-goettingen.de/darp/drebin/, a detailed instruc-
tion to obtain mobile malware samples, while ransomware
samples are available at: http://ransom.mobi/. The developed
scripts require the Python interpreter.

7.4. External validity

Threats concerning the generalization of results may induce
the approach to exhibit different performances when applied
to other contexts.

First of all, our study on mobile was previously applied to
metamorphic malware for PCs, as we explained in related work
section. Secondly, we have used a very large dataset (~11,000
applications), which could well represent the real population
of malware and trusted applications.

8. Conclusion and future work

In this paper we propose a detector for malicious mobile ap-
plications consisting on a classifier which uses as features 3-4-5
states HMM and the structural entropy.

Current malware detection techniques are ineffective, as they
usually fail against zero-day attacks, in addition to the fact that
existing malware can easily evade the current detectors.

This happens because Android malware is increasingly be-
coming more and more complex, and it is acquiring
characteristics that make it closer to polymorphic and meta-
morphic malware for PCs; or the Android malware itself uses
techniques for morphing code.

The proposed methods has been already experimented on
metamorphic viruses for PCs (Attaluri et al., 2008; Baysa et al.,
2013): we studied the effectiveness of these methods to de-
tecting Android malware.

Experimentation suggests that HMM method (with 5 hidden
states) is the best one to identify malware applications with
a precision of 0.96, while the structural entropy can more cor-
rectly identify the malware family, with a precision of 0.98.

These two methods could be implemented into a two-
phase detector: as the first phase HMM method is applied to
discriminate a malware application, while in the second phase
structural entropy may identify the malware family.

The accuracy of the performed tests is very high in case of
malware families recognition, but it is fair for the malware de-
tection, which could be improved by using a larger number of
states.

Considering the evolution of Android malware, the pre-
sented methods could be effective also in recognizing unknown
malware, at least when it is generated by evolving existing
malware.

Future works will be headed to assess the robustness of
these two methods against morphing techniques on Android
malware and to replicate the experimentation by increasing
the number of states in the HMM detector.

R E F E R E N C E S

Addision PS. The illustrated wavelet transform handbook:
introductory theory and applications in science, engineering,
medicine and finance. Taylor & Francis Group; 2002.

Alcatel Lucent. Kindsight security labs malware report – q4.
<http://www.tmcnet.com/tmc/whitepapers/documents/
whitepapers/2014/9861-kindsight-security-labs-malware-
report-q4-2013.pdf>; 2013 [accessed 21.01.15].

Andronio N, Zanero S, Maggi F. Heldroid: dissecting and
detecting mobile ransomware. In: Research in attacks,
intrusions, and defenses. Springer; 2015. p. 382–404.

Anon. An assembler/disassembler for android’s dex format.
<https://code.google.com/p/smali/>; 2015 [accessed 26.01.15].

Table 10 – Cpu time required in order to analyze a new
sample using respectively structural entropy and HMM
methods with 3, 4 and 5 hidden states.

Entropy HMM3 HMM4 HMM5

3.84891 s 613.2657 s 695.1879 s 1111.4455 s

16 c om pu t e r s & s e cu r i t y 6 1 (2 0 1 6) 1 – 1 8

http://www.gerardocanfora.net/hmm-replication-package/HMM_Entropy.tar.gz
http://www.gerardocanfora.net/hmm-replication-package/HMM_Entropy.tar.gz
http://user.informatik.uni-goettingen.de/darp/drebin/
http://user.informatik.uni-goettingen.de/darp/drebin/
http://ransom.mobi/
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0010
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0010
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0010
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0015
http://www.tmcnet.com/tmc/whitepapers/documents/whitepapers/2014/9861-kindsight-security-labs-malware-report-q4-2013.pdf
http://www.tmcnet.com/tmc/whitepapers/documents/whitepapers/2014/9861-kindsight-security-labs-malware-report-q4-2013.pdf
http://www.tmcnet.com/tmc/whitepapers/documents/whitepapers/2014/9861-kindsight-security-labs-malware-report-q4-2013.pdf
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0020
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0020
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0020
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0025
https://code.google.com/p/smali/
think
高亮

Apvrille L, Apvrille A. Identifying unknown android malware
with feature extractions and classification techniques. In:
Trustcom/BigDataSE/ISPA, 2015 IEEE, vol. 1. IEEE; 2015. p. 182–
9.

Arp D, Spreitzenbarth M, Huebner M, Gascon H, Rieck K. Drebin:
efficient and explainable detection of android malware in
your pocket. In: Annual network and distributed system
security symposium (NDSS). 2014. p. 1–15.

Attaluri S, McGhee S, Stamp M. Profile Hidden Markov Models
and metamorphic virus detection. J Comput Virol Hacking
Tech 2008;5(2):179–92.

Bayer U, Kruegel C, Kirda E. TTanalyze: a tool for analyzing
malware. In: European institute for computer antivirus
research annual conference. 2006.

Baysa D, Low RM, Stamp M. Structural entropy and metamorphic
malware. J Comput Virol Hacking Tech 2013;9(4):179–92.

Borda M. Fundamentals in information theory and coding.
Springer; 2011.

Busticati Productions Presents. Dissecting the android bouncer.
<https://jon.oberheide.org/files/summercon12-bouncer.pdf>;
2015 [accessed 30.01.15].

Canfora G, Mercaldo F, Visaggio CA. A classifier of malicious
android applications. In: International conference on
availability, reliability and security. 2013. p. 607–14.

Canfora G, Medvet E, Mercaldo F, Visaggio CA. Detecting android
malware using sequences of system calls. In: Proceedings of
the 3rd international workshop on software development
lifecycle for mobile. ACM; 2015. p. 13–20.

Canfora G, Lorenzo AD, Medvet E, Mercaldo F, Visaggio CA.
Effectiveness of Opcode ngrams for detection of multi family
android malware. In: International conference on availability,
reliability and security. 2015.

Chakradeo S, Reaves B, Traynor P, Enck W. MAST: triage for
market-scale mobile malware analysis. In: ACM conference
on Security and privacy in wireless and mobile networks
(WiSec). 2013. p. 13–24.

Chen Y, Ghorbanzadeh M, Ma K, Clancy C, McGwier R. A Hidden
Markov Model detection of malicious android applications at
runtime. In: Wireless and optical communication conference
(WOCC). 2014 23rd. IEEE; 2014. p. 1–6.

Chin E, Felt AP, Greenwood K, Wagner D. Analyzing inter-
application communication in android. In: Proceedings of the
9th international conference on mobile systems, applications,
and services. ACM; 2011. p. 239–52.

Chouchane R, Stakhanova N, Walenstein A, Lakhotia A. Detecting
machine-morphed malware variants via engine attribution. J
Comput Virol Hacking Tech 2013;9(3):137–57.

Deshotels L, Notani V, Lakhotia A. Droidlegacy: automated
familial classification of android malware. In: ACM SIGPLAN
on program protection and reverse engineering workshop.
2014.

Dumitras T, Neamtiu I. Experimental challenges in cyber
security: a story of provenance and lineage for malware. ACM;
2011.

F-Secure. Mobile threat report. <https://www.f-secure.com/
documents/996508/1030743/Threat_Report_H1_2014.pdf>;
2015 [accessed 07.02.15].

Faruki P, Ganmoor V, Laxmi V, Gaur MS, Bharmal A.
Androsimilar: robust statistical feature signature for android
malware detection. In: International conference on security of
information and networks. 2013. p. 151–9.

Feng Y, Anand S, Dillig I, Aiken A. Apposcopy: semantics-based
detection of android malware through static analysis. In: ACM
SIGSOFT international symposium on foundations of
software engineering. 2014. p. 576–87.

Fraunhofer AISEC. On the effectiveness of malware protection on
android. <http://www.aisec.fraunhofer.de/content/dam/
aisec/Dokumente/Publikationen/Studien_TechReports/

deutsch/042013-Technical-Report-Android-Virus-Test.pdf>;
2013 [accessed 21.01.15].

InfoWorld. Update: McAfee: cyber criminals using android
malware and ransomware the most. <http://www.infoworld
.com/article/2614854/security/update-mcafee-cyber-
criminals-using-android-malware-and-ransomware-the-
most.html>; 2013 [accessed 21.01.15].

Karim ME, Walenstein A, Lakhotia A, Parida L. Malware
phylogeny generation using permutations of code. Springer;
2005.

Khoo W, Lio P. Unity in diversity: phylogenetic-inspired
techniques for reverse engineering and detection of malware
families. In: SysSec workshop. Springer; 2011.

Ki Y, Kim E, Kim HK. A novel approach to detect malware based
on API call sequence analysis. Int J Distrib Sens Netw
2015;2015:4.

Kinjo T, Funaki K. On hmm speech recognition based on complex
speech analysis. In: Annual conference on industrial
electronics. 2006. p. 3477–80.

Lagerspetz E, Truong HTT, Tarkome S, Asokan N. Mdoctor: a
mobile malware prognosis application. In: International
conference on distributed computing systems workshops.
2014. p. 201–6.

Liang S, Du X. Permission-combination-based scheme for
android mobile malware detection. In: International
conference on communications. 2014. p. 2301–6.

Liu X, Liu J. A two-layered permission-based android malware
detection scheme. In: International conference on mobile
cloud computing, service, and engineering. 2014.
p. 142–8.

Lyda R, Hamrock J. Using entropy analysis to find encrypted and
packed malware. Secur Priv 2007;5(2):40–5.

Ma J, Dunagan J, Wang HJ, Savage S, Voelker GM. Finding diversity
in remote code injection exploits. In: Proceedings of the 6th
ACM SIGCOMM conference on internet measurement. ACM;
2006.

Munoz A, Martin I, Guzman A, Hernandez JA. Android malware
detection from Google play meta-data: selection of important
features. In: 2015 IEEE Conference on Communications and
Network Security (CNS). IEEE; 2015. p. 701–2.

Paller G. Dalvik opcodes. <http://pallergabor.uw.hu/androidblog/
dalvik_opcodes.html>; 2015 [accessed 26.01.15].

Plotz T, Fink GA. A new approach for hmm based protein
sequence family modeling and its application to remote
homology classification. In: Workshop on statistical signal
processing. 2005. p. 1008–13.

Poeplau S, Fratantonio Y, Bianchi A, Kruegel C, Vigna G. Execute
this! Analyzing unsafe and malicious dynamic code
loading in android applications. In: NDSS, vol. 14. 2014.
p. 23–6.

Qin Z, Chen N, Zhang Q, Di Y. Mobile phone viruses detection
based on hmm. In: International conference on multimedia
information networking and security. 2011. p. 516–19.

Rabiner LR. A tutorial on Hidden Markov Models and selected
applications in speech recognition. Proc IEEE 1989;77(2):257–
86.

Ramachandran R, Oh T, Stackpole W. Android anti-virus
analysis. In: Annual symposium on information assurance &
secure knowledge management. 2012. p. 35–40.

Rastogi V, Chen Y, Jiang X. Droidchameleon: evaluating android
anti-malware against transformation attacks. In: ACM
symposium on information, computer and communications
security. 2013. p. 329–34.

Sayfullina L, Eirola E, Komashinsky D, Palumbo P, Miche Y,
Lendasse A, et al. Efficient detection of zero-day android
malware using Normalized Bernoulli Naive Bayes. In:
Trustcom/BigDataSE/ISPA, 2015 IEEE, vol. 1. IEEE; 2015. p. 198–
205.

17c om pu t e r s & s e cu r i t y 6 1 (2 0 1 6) 1 – 1 8

http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0030
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0030
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0030
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0030
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0035
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0035
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0035
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0035
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0040
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0040
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0040
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0045
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0045
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0045
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0050
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0050
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0055
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0055
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0060
https://jon.oberheide.org/files/summercon12-bouncer.pdf
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0065
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0065
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0065
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0070
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0070
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0070
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0070
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0075
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0075
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0075
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0075
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0080
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0080
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0080
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0080
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0085
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0085
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0085
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0085
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0090
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0090
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0090
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0090
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0095
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0095
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0095
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0100
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0100
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0100
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0100
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0105
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0105
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0105
https://www.f-secure.com/documents/996508/1030743/Threat_Report_H1_2014.pdf
https://www.f-secure.com/documents/996508/1030743/Threat_Report_H1_2014.pdf
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0115
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0115
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0115
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0115
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0120
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0120
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0120
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0120
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0125
http://www.aisec.fraunhofer.de/content/dam/aisec/Dokumente/Publikationen/Studien_TechReports/deutsch/042013-Technical-Report-Android-Virus-Test.pdf
http://www.aisec.fraunhofer.de/content/dam/aisec/Dokumente/Publikationen/Studien_TechReports/deutsch/042013-Technical-Report-Android-Virus-Test.pdf
http://www.aisec.fraunhofer.de/content/dam/aisec/Dokumente/Publikationen/Studien_TechReports/deutsch/042013-Technical-Report-Android-Virus-Test.pdf
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0130
http://www.infoworld.com/article/2614854/security/update-mcafee-cyber-criminals-using-android-malware-and-ransomware-the-most.html
http://www.infoworld.com/article/2614854/security/update-mcafee-cyber-criminals-using-android-malware-and-ransomware-the-most.html
http://www.infoworld.com/article/2614854/security/update-mcafee-cyber-criminals-using-android-malware-and-ransomware-the-most.html
http://www.infoworld.com/article/2614854/security/update-mcafee-cyber-criminals-using-android-malware-and-ransomware-the-most.html
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0135
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0135
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0135
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0140
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0140
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0140
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0145
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0145
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0145
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0150
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0150
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0150
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0155
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0155
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0155
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0155
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0160
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0160
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0160
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0165
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0165
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0165
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0165
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0170
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0170
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0175
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0175
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0175
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0175
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0180
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0180
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0180
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0180
http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html
http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0190
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0190
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0190
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0190
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0195
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0195
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0195
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0195
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0200
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0200
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0200
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0205
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0205
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0205
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0210
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0210
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0210
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0215
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0215
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0215
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0215
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0220
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0220
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0220
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0220
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0220

Sorokin I. Comparing files using structural entropy. J Comput
Virol Hacking Tech 2011;7(4):259–65.

Spreitzenbarth M, Echtler F, Schreck T, Freling FC, Hoffmann J.
Mobilesandbox: looking deeper into android applications. In:
International ACM symposium on applied computing (SAC).
2013. p. 1808–15.

Ugarte-Pedrero X, Santos I, Sanz B, Laorden C, Bringas PG.
Countering entropy measure attacks on packed software
detection. In: The 9th annual IEEE consumer communications
and networking conference – security and content protection.
2012. p. 164–8.

Visaggio CA, Mercaldo F. Evaluating the signature based and
research antimalware tools against malware in the wild and
third-party markets: a technical report. <https://www
.researchgate.net/publication/275334543_Evaluating_the
_commercial_and_research_antimalware_tools_against
_malware_in_the_wild_and_third-party_markets_A_technical
_report>; 2015 [accessed 17.06.15].

Wei J, Juarez E, Garrido MJ, Pescador F. Maximizing the user
experience with energy-based fair sharing in battery
limited mobile systems. IEEE TransConsum Electron
2013;59(3):690–8.

Wu W-C, Hung S-H. Droiddolphin: a dynamic android malware
detection framework using big data and machine learning. In:
Conference on research in adaptive and convergent systems.
2014. p. 247–52.

Xie L, Zhang X, Seifert J-P, Zhu S. PBMDS: a behavior-based
malware detection system for cellphone devices. In:
Proceedings of the third ACM conference on wireless network
security. ACM; 2010. p. 37–48.

Xin K, Li G, Qin Z, Zhang Q. Malware detection in smartphones
using Hidden Markov Model. In: International conference on
multimedia information networking and security. 2012. p.
857–60.

Yerima SY, Sezer S, McWilliams G, Muttik I. A new android
malware detection approach using Bayesian classification. In:
International conference on advanced information
networking and applications. 2013. p. 121–8.

Yerima SY, Sezer S, Muttik I. High accuracy android malware
detection using ensemble learning, information security. IET
2015;9(6):313–20.

Zhou Y, Jiang X. Dissecting android malware: characterization
and evolution. In: IEEE symposium on security and privacy
(SP). 2012. p. 95–109.

18 c om pu t e r s & s e cu r i t y 6 1 (2 0 1 6) 1 – 1 8

http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0225
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0225
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0230
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0230
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0230
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0230
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0235
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0235
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0235
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0235
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0235
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0240
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0240
https://www.researchgate.net/publication/275334543_Evaluating_the_commercial_and_research_antimalware_tools_against_malware_in_the_wild_and_third-party_markets_A_technical_report
https://www.researchgate.net/publication/275334543_Evaluating_the_commercial_and_research_antimalware_tools_against_malware_in_the_wild_and_third-party_markets_A_technical_report
https://www.researchgate.net/publication/275334543_Evaluating_the_commercial_and_research_antimalware_tools_against_malware_in_the_wild_and_third-party_markets_A_technical_report
https://www.researchgate.net/publication/275334543_Evaluating_the_commercial_and_research_antimalware_tools_against_malware_in_the_wild_and_third-party_markets_A_technical_report
https://www.researchgate.net/publication/275334543_Evaluating_the_commercial_and_research_antimalware_tools_against_malware_in_the_wild_and_third-party_markets_A_technical_report
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0245
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0245
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0245
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0245
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0250
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0250
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0250
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0250
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0255
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0255
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0255
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0255
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0260
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0260
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0260
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0260
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0265
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0265
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0265
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0265
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0270
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0270
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0270
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0275
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0275
http://refhub.elsevier.com/S0167-4048(16)30049-9/sr0275

	 An HMM and structural entropy based detector for Android malware: An empirical study
	 Introduction
	 Background and related work
	 HMM
	 Structural entropy
	 Related work
	 HMM-related methods
	 Entropy-related methods
	 ML-related methods

	 Adopting HMM and structural entropy malware detection for android
	 HMM as malware detection tool
	 Entropy-based detection

	 Experimental evaluation: study definition
	 Research questions
	 The dataset
	 The analysis method

	 Analysis of results
	 RQ1: is an HMM based detector able to discriminate a malware from a trusted application for smartphones?
	 RQ2: is an HMM based detector able to identify the family of a malware application?
	 RQ3: is the structural entropy similarity able to discriminate a malware from a trusted application?
	 RQ4: is the structural entropy similarity able to identify the family of a malware application?

	 Performance evaluation
	 Threats to validity
	 Construct validity
	 Internal validity
	 Reliability validity
	 External validity

	 Conclusion and future work
	 References

