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The widespread use of mobile devices in comparison to personal computers has led to a
new era of information exchange. The purchase trends of personal computers have started
decreasing whereas the shipment of mobile devices is increasing. In addition, the
increasing power of mobile devices along with portability characteristics has attracted the
attention of users. Not only are such devices popular among users, but they are favorite
targets of attackers. The number of mobile malware is rapidly on the rise with malicious

1131?)' Si,;)eni;:alware activities, such as stealing users data, sending premium messages and making phone call
Android to premium numbers that users have no knowledge. Numerous studies have developed

methods to thwart such attacks. In order to develop an effective detection system, we have
to select a subset of features from hundreds of available features. In this paper, we studied
100 research works published between 2010 and 2014 with the perspective of feature
selection in mobile malware detection. We categorize available features into four groups,
namely, static features, dynamic features, hybrid features and applications metadata.
Additionally, we discuss datasets used in the recent research studies as well as analyzing
evaluation measures utilized.

Feature selection
Review paper
Mobile operating system

© 2015 Elsevier Ltd. All rights reserved.

Introduction

The ubiquity of mobile devices is undeniable because
they have brought new possibilities to every days life.
Contemporary mobile devices are more powerful when
compared to Personal Computers (PCs) ten years ago. Un-
like PCs, portability of mobile devices makes them attrac-
tive to users. In addition, their small sizes as compared to
personal computers play an important role in increasing
their popularity. Furthermore, users interests are
increasing towards the Rich Mobile Applications (RMA),
such as Google Maps that deliver rich user experience along
with high interaction (Knoernschild, 2010). However, such
popularity has serious security and privacy threats and

* Corresponding author.
E-mail addresses: ali.feizollah@siswa.um.edu.my (A. Feizollah),
badrul@um.edu.my (N.B. Anuar), rosli_salleh@um.edu.my (R. Salleh),
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various other malicious activities. The malicious activities
are hidden from the user and are committed in the back-
ground or at midnight when the user is asleep (Eslahi et al.,
2012). Based on such characteristics, we assess the research
works done to detect these malware.

The aim of this paper is to scrutinize various features
available in Android malware, since feature selection has
considerable effects on results of experiments. We discuss
such effect in the following sections. Suarez-Tangil et al.
(2013) discuss malware for smart devices in general.
However, the paper discusses various types of features very
briefly and the authors did not cover all types of available
features. Similarly, La Polla et al. (2013) investigates various
types of mobile devices, available malware, their effect on
the devices and different detection methods. Nevertheless,
they did not mention what features they used in detection,
considering that features have significant impact on
detection. Mohite and Sonar (2014) survey different anal-
ysis techniques in mobile malware detection. The paper
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mention examples of detection methods along their
description. The paper does not include datasets and
evaluation measures. In addition, it does not cover all the
recent works comprehensively. Peng et al. (2014) examines
evolution of mobile malware, their damages and their
propagation model. They included various operating sys-
tem in the paper, which makes it difficult to examine all
available aspects thoroughly. However, we focus on
Android operating system and the results are more accu-
rate and comprehensive. Additionally, to the best of our
knowledge, surveying Android features is unprecedented
in research works.

The rest of this paper is organized as follows. Section 2
gives background information needed for the rest of the
paper. Section 3 examines four types of features in mobile
malware detection including the static, dynamic, hybrid
and applications metadata. We comprehensively analyze
each type of features. Section 4 presents discussions
regarding the datasets used in the recent research works
and their description. Additionally, we discuss the evalua-
tion measures of malware detection in this section. Finally,
Section 5 concludes the paper by highlighting important
points.

Background

In this section, we present background information.
First, we investigate the supremacy of mobile devices and
see where mobile devices stand against PCs. Next, we
examine how widespread mobile malware are; we then
explain different types of malware, ranging from simple
one to the most dangerous and sophisticated one. It is
beneficial to know popularity of mobile devices, as well as,
the seriousness of mobile malware. We scrutinize the
importance of feature selection in malware detection in the
next sub-section in order to establish the necessity of this
research work. Finally, we take a closer look at Android files
and their components, since we refer to various compo-
nents throughout this work.

Supremacy of mobile devices

Popularity of mobile devices is on the rise (Chen and
Bilton, 2014). Gartner, an American information technol-
ogy research and advisory firm, reported that total ship-
ment of mobile devices increased in 2013 by 5.9% and
reached 2.35 billion devices compared to the previous year
and it is estimated that the growth continues to 2.5 billion
devices in 2014 (Gartner, 2013). On the other hand, the
shipment of PCs has declined to 305 million units in 2013
and it is expected to decrease below 300 million units in

Table 1
Worldwide devices shipments (thousands of units) (Gartner, 2013).
2012 2013 2014

PC (Desktop and Notebook) 341,273 305,178 289,239
Ultramobile 9787 20,301 39,824
Tablet 120,203 201,825 276,178
Mobile Phone 1,746,177 1,821,193 1,901,188
Total 2,217,440 2,348,497 2,506,429

2014 (Gartner, 2013). Table 1 shows the number of devices
shipments in 2012, 2013 and 2014.

The comparison between PC and mobile devices, ultra-
mobile, tablets, and mobile phones, reveals that the num-
ber of PCs is decreasing while the shipment of mobile
devices is increasing. In terms of usage of mobile devices,
Walker Sands published a report that indicated the Internet
traffic pertaining to mobile devices increased. Based on the
report, the Internet traffic of mobile devices represents 67%
increase in the third quarter of 2013 compared to the same
period in 2012 (Sands, 2013).

The rise of android malware

There are numerous mobile operating systems in the
market namely, Android (Google, 2014a), i0S (Apple, 2014),
Windows Phone (Microsoft, 2014), and BlackBerry (R. in
Motion, 2014). Android has dominated the mobile devices
industry. Based on a report, a total of 261.1 million devices
were shipped in the third quarter of 2013 and 81.3% of the
shipped devices were running Android operating system
(CNET, 2013). Fig. 1 depicts the dominance of Android
among other mobile operating systems.

The number of attacks is steadily going up for Android.
Based on the report from F-Secure, Android incorporated
79% of all malware in 2012 compared to 66.7% in 2011 and
just 11.25% in 2010 (Techcrunch, 2013). Similarly, Symantec
said that number of Android malware increased almost
four times between June 2012 and June 2013 (Symantec,
2013). In addition, the period of April 2013 to June 2013
witnessed a massive growth of almost 200% in Android
malware. Fortinet (2014), a world leader in high perfor-
mance network security, announced that within the period
of January 1, 2013 until December 31, 2013, they discovered
over 1800 new distinct families of malware and the ma-
jority of which were Android malware. Malware growth
not only degrades performance of the devices, but also has
posed serious concerns towards the privacy and security of
data (Fortinet, 2014). In February 2014, Symantec stated
that an average of 272 new malware and five new malware
families are discovered every month targeting Android
operating system (Symantec, 2014).

The reason of such enormous increase in Android mal-
ware lies in the fact that Android is an open source oper-
ating system (Teufl et al., 2013) and the application market
of Android, known as Google Play, is not monitored
meticulously in terms of security (Feizollah et al., 2013).

m2011 ®2012 m2013

78.6
69 ]
49.2 i
18.818.7 152 19.8
i 10.3 45 54
1.8 24 33 -0-1.9 .
. . . - -
Android oS Windows Phone  BlackBerry Others

Fig. 1. Mobile operating systems market share (% of global unit shipments)
(Motley, 2014).
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Moreover, there are some unofficial Android markets, for
example Aptoide (2014) in which the security issues are not
paid much attention. Furthermore, as mentioned earlier,
the market share of Android among mobile operating sys-
tems is considerably high. Consequently, attackers target
Android to gain more benefits as compared to other oper-
ating systems.

Types of android malware

There are variety of attacks particular to Android
ranging from adware to the most sophisticated and
dangerous ones. Adware have the purpose of just adver-
tising a product or a website that are harmless but
annoying. The most dangerous and sophisticated malware
are capable of accessing personal data on the device as well
as hijacking the mobile device.

Android Dowgin is an example of an adware that installs
itself on Android device as a bundle with other application.
It then displays advertisements in the notification area of
the device and is not easily removed. It is estimated that
between 10,000 and 50,000 users are infected with this
adware (AVG.ThreatLabs, 2013). It has been spreading since
July 2013 and continues to proliferate (Eset, 2013). The
alarming issue is that as of December 2013, some of the
prominent anti-virus software such as Symantec, Trend-
Micro, and McAfee were not able to detect it (Virustotal,
2013).

The Android attackers, sometimes, have financial en-
couragements and also have turned out to be more
aggressive recently (Symantec, 2014). Upon installation,
some applications send expensive short message service
(SMS) to premium numbers without users knowledge that
reflects itself in users bills. Such applications have been on
the rise for years. A report published in 2013 shows that
some attackers earn up to USD 12,000 per month via such
malware (The.Register, 2013). Fig. 2 shows the number of
malware with financial motivations within the period of
2006 and 2012.

Based on a report by Sophos, a security firm, a malicious
version of the popular Angry Bird game secretly sends
premium SMS that costs GBP 15. Each time the user starts
the application, it sends a premium SMS. It is estimated
that 1391 devices were infected with this malware and it is
evaluated that the developers of this malicious application
earned GBP 27,850 through sending SMS to premium
numbers (Sophos, 2012).
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Fig. 2. Number of mobile malware motivated by profit per year, 2006—2012
(Techcrunch, 2013).

Some of malware have gone further by making phone
calls in the background without users knowledge. Moua-
Bad is a malware that secretly makes phone calls in such a
way that it waits until a while after the devices screen goes
off and the screen becomes locked. It then starts calling
premium numbers. As soon as the user interacts with the
device, the malware ends the call. Fortunately, this mal-
ware does not alter call logs and the user is able to discover
existence of the malware by checking the call logs (Lookout,
2013).

A botnet is more dangerous than the aforementioned
malicious applications. Upon infecting the device, the
attacker gains access to the devices and can perform ma-
licious activities by controlling applications on the device. A
botnet is the network of such infected devices. An attacker
can access hundreds of infected devices in a single botnet
(Vural et al., 1007). For example, security analysts discov-
ered an infected version of the Angry Birds Space in April
2012. It functions like a normal application without suspi-
cious symptoms. However, it uses a software trick known
as GingerBreak to acquire root access that allows it to do
tasks outside its privilege. It secretly downloads malicious
codes from a server and opens a back door for attackers
upon which the device joins the botnet eventually (Sophos,
2013). The ZeroAccess botnet is adding approximately
100,000 new infections weekly by paying considerable
amount of money weekly to generate new associated in-
fections. It had 88.65% share of botnet dominance in 2013
(Fortinet, 2014).

Recently, attackers have adopted a new approach to-
wards infecting mobile devices. Thus far, attackers were
depending on alluring users to download their malicious
applications after which the application performs mali-
cious activity without users knowledge. It has been
observed that personal computers have been used as a
conduit to Android devices, which is called hybrid threats
(Symantec, 2014). Trojan Droidpak uses hybrid threats to
infect mobile devices. It first gains access to a personal
computer and based on that a malicious Android applica-
tion package (APK) file downloads itself. When the user
connects an Android device to the computer, the malicious
file attempts to install itself on the device. After the suc-
cessful installation, it attempts to convince the user to
download and install the infected version of Korean
banking application (Symantec, 2014).

The importance of feature selection

Numerous studies try to confront the danger of Android
malware. One of the first approaches is signature-based
detection in which the detection system constructs a
unique signature for a malware and detects malware by
matching the signature with the collected data. However, a
small modification in a malware leads to a new variant of
the malware and is able to bypass the signature detection
method (Garcia-Teodoro et al., 2009). DroidAnalytics
(Zheng et al., 2013) was developed based on the signature-
based method. It automatically collects, extracts, and ana-
lyzes the signature of an Android application file. It uses
Java code and classes as a signature to detect the known
malware. Nevertheless, it is unable to detect unknown
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malware. With the steady rise of new variants of Android
malware, it is vital to detect them effectively.

Researchers turned to machine learning methods to
overcome the limitations of the signature-based method.
We train machine learning algorithms based on collected
data. They are capable of detecting anomalies, which is
necessary to discover new malware. For example, Sahs and
Khan (2012) performed an experiment in which they
applied support vector machine (SVM) algorithm on their
dataset. The authors trained the algorithm and achieved
93% of accuracy. Similarly, Garcia-Teodoro et al. (2009)
presented a study in which they used k-means algorithm
for malware detection. The authors achieved 87.39% of
detection accuracy.

In machine learning methods, feature selection is one of
the first and most crucial steps. In case of Android appli-
cations, they consist of various elements such as permis-
sions, Java code, certification, behavior of the application on
the device and its behavior on the network. Selecting the
most useful subset of features from massive number of
available features changes the result of the whole experi-
ment (Guyon and Elisseeff, 2003). Some of the benefits of
feature selection are as follows:

e Feature selection makes it possible to reduce dimen-
sionality of datasets because with less data, it is possible
to easily visualize the trend in data (Crussell et al.).

e Analyzing datasets involve processing vast amount of
data and therefore, reducing them to a useful subset not
only saves the time and cost of experiments, but also
minimizes the time for real world implementation
(Crussell et al.). Selecting useful subset of the features
considerably reduces runtime of the machine learning
algorithms in training phase.

e Feature selection removes noisy and irrelevant data
from datasets leading to more accurate results of ma-
chine learning algorithms (Jensen and Shen, 2008).

We conducted two experiments to examine the effect of
features on results. We collected network traffic of over 800
Android applications, including normal and malicious,
from MalGenome (Yajin and Xuxian, 2012) data sample.
The dataset consists of ten network traffic features out of
which we selected five features for each experiment. The
dataset comprises of 504,148 records. K-nearest neighbors
classifier with three as the number of neighbors were used.
Table 2 shows results of the experiments.

Table 2
Results of the experiments.

Experiment 1 Experiment 2

Features frame.len tcp.dstport
frame.number tcp.window_size
frame.time_delta value
frame.time_relative tcp.seq
tcp.srcport ip.src

ip.dst
True Positive 98.63% 99.98%
Rate (TPR)
False Positive 1.37% 0.02%
Rate (FPR)

As Table 2 illustrates, different features yield different
results despite the fact that the data collection process and
used classifier are same for both the experiments. Thus, the
effect of feature selection is conspicuous. In addition, se-
lection of the most useful features is an important and
challenging task.

In this paper, we are scrutinizing various types of fea-
tures available in Android applications and their trend in
the research works. Moreover, we provide some guidelines
on how to choose the best features. Additionally, we discuss
various utilized datasets and present discussion on various
evaluation measures employed by recent works.

Structure of android application package (APK)

Throughout this study, we refer to various components
of an Android installation file, known as APK. It is beneficial
to explain about different parts of such files. It is worth
noting that an APK is an archive file type that softwares
such as WinZip are able to open it (Sanz et al., 2012).
Components of an APK file are as follows:

e AndroidManifest.xml: An XML file holding meta infor-
mation about an application, such as descriptions and
security permissions. Prior to installation of an Android
application, the application provides prospective users
with a list of permissions that are available in the file.

e C(Classes.dex: It contains source code of an application
written in Java and compiled for Android that the ma-
chine converts it to a special file format with .dex
extension.

e Resources: It entails all resources an application needs
to run, such as pictures used in the application, layout of
the application, its appearance to a user, use of a data-
base, and data stored in the database.

Feature selection in mobile malware detection

An Android application consists of several parts that
have the potential to be a feature in Android malware
detection. Fig. 3 shows various types of features and sub-
types of each category. In this work, we analyzed 100 pa-
pers, from highly credible sources such as IEEE and
Springer, with the perspective of feature selection in
Android malware detection. We selected publications be-
tween 2010 and March 2014. Based on our findings, re-
searchers published 49 research papers regarding Android
malware detection in year 2013. It signifies that the interest
towards developing effective systems for Android malware
detection is increasing compared to 22 papers in 2012 and
7 papers in 2011. Moreover, the first quarter of 2014 has 15
publications.

We have divided mobile malware features into four
groups. Table 3 shows these four groups of features with
their descriptions.

Additionally, we have analyzed recent works based on
type of features they used. Fig. 4 shows the percentage of
each group in reviewed papers. Based on Fig. 4, re-
searchers chose static features nearly equal as dynamic
features. Although the hybrid features are more
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Fig. 3. Taxonomy of mobile malware features.

comprehensive, they constitute only 10% of the literatures.
The apparent reason is the complicated process of using
two types of features, since the hybrid features require
collecting static and dynamic features separately. In the
following sections, we discuss each type of features in
detail.

Static features

Static features include features available in the apk file
such as AndroidManifest.xml file and Java code file. Out of
100 papers reviewed, 45 papers used static features to
conduct their experiments. Among the static features,
researchers used Android permission in 36% of the papers
(Yerima et al., 2014; Aung and Zaw, 2013; Grace et al;
Peng et al., 2012; Grace et al., 2307; Sarma et al.; Samra
et al., 2013; Yerima et al., 2013; Sahs and Khan, 2012;
Sanz et al., 2013a; Zhou et al.; Sanz et al., Bringas; Seo
et al, 2014; Wu et al, 2012; Sanz et al., 2013b; Arp
et al., 2014), more than other static features. Selection
of Java code comes second with 29% of papers (Desnos,
2012; Rastogi et al., 2014; Faruki et al.; Suarez-Tangil
et al., 2014; Grace et al.; Lu et al., 2012; Crussell et al.;
Deshotels et al.; Zhou et al.; Shabtai et al., 2010a; Zheng
et al., 2013; Almohri et al.; Zheng et al.). The following
sections discuss the static features in details.

Table 3
Categorization of mobile malware features.
Type of feature Description
Static They are pertaining to the content of APK files.

There are various features in APK files, such as
permissions, Java code, intent filters, network
address, strings and hardware components.
They represent post-installation behavior of
applications on mobile devices and include
behavior of the application in the operating
system or on the network.

Hybrid Hybrid features are combination of both static
and dynamic features. They are the most
comprehensive features because they analyze
applications from various aspects.

The last group consists of metadata pertaining
to Android applications, such as their
information on Google Play.

Dynamic

Applications’
Metadata

Android permission feature

We know that Android operating system has Linux core;
among which it comprises important part of Linux security
architecture. Prior to installation of an application, it pro-
vides list of requested permissions to the user. Upon
granting the permissions by the user, the application in-
stalls itself on the device. There are 134 official Android
permissions in Android 2.2 (i.e. API 8) (Felt et al.). Google
categorized them into four groups, namely, normal,
dangerous, signature, and signature or system (Google,
2014b). There are different approaches taken by re-
searchers in analyzing Android permissions. Authors of
(Peng et al., 2012; Wang et al., 2013; Pandita et al.; Grace
et al.) used permissions to evaluate applications and
ranked them based on possible risks (using probabilistic
generative models, quantitative security risk assessment).
Numerous studies simply extracted permissions and uti-
lized machine learning to detect malicious application,
(Samra et al., 2013; Aung and Zaw, 2013; Yerima et al., 2014;
Sanz et al., 2013a). Researchers in (Moonsamy et al., 2013;
Huang et al.) argue that merely analyzing requested per-
missions is not sufficient for detecting malicious applica-
tions. They analyzed used permissions in addition to

Hybrid Features .
10% —

Applications Metadata
3%

Static Features
45%

Dynamic Features
42%

Fig. 4. Categorizing literature based on type of features.
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requested permissions in order to detect malware. App-
Guard (Backes et al.) has gone one step further and has
extended Android permission system to alleviate current
vulnerabilities. They claim that their system is a practical
extension for Android permission system as it is possible to
use it on devices without any modification or root access.

Why Android permission is the most used static
feature? As mentioned earlier, Android operating system
has Linux architecture. Permission is the first barrier to
attackers. Even though the Java code contains malicious
code, some of API calls in the code need permission to be
invoked (Wu et al.,, 2012). Permission-protected API calls
are part of the security features of Android operating sys-
tem. For example, before sending a message or accessing
the camera, Android checks if the application has permis-
sion to do so (Felt et al., 2046). Based on such scenario,
focus of researchers is on permissions more than other
static features to detect malware based on demanded
permissions.

Android Java code feature

Developers write Android applications in Java pro-
gramming language and subsequently compile them to a
special format called Dalvik, which is proprietary to Android
operating system. Google introduced Android runtime
(ART) in the 4.4 release. Although ART offers new features
(i.e. ahead-of-time compilation, improved garbage collec-
tion, development and debugging improvements), Dalvik
remains the default runtime in the Android operating sys-
tem (Google, 2014c). Researchers have used various analysis
approaches on the Java code. Some researchers use Appli-
cation Programming Interface (API) calls to detect malware
(Rastogi et al., 2014; Grace et al., 2307; Deshotels et al.;
Yerima et al., 2013; Zheng et al., 2013). Every Android
application needs to have API calls to interact with the de-
vice. As an example, there are API calls to the telephony
manager of the operating system to retrieve phone ID and
subscriber ID. The API calls in a method are sequential. Re-
searchers consider such a sequence as the applications
signature that is unique to that application. Changing the
sequence of API calls is a strategy used by attackers to
bypass the detection process, called code obfuscation.
Analyzing control flow of the Java code is another approach
adopted by researchers (Suarez-Tangil et al., 2014; Crussell
et al.; Xu et al., 2013; Chin et al., 2000; Sahs and Khan,
2012). Although attackers can change the sequence of API
calls or rename API calls to evade detection system, the flow
of the Java code does not change and researchers use it to
develop stronger detection systems.

Other static features
Besides permissions and Java code, some researchers
analyze several other static features that are as follows.

e Intent Filter: Intent filter is one of the elements
described in the manifest file. It is an abstract informa-
tion about an operation, with which we infer intentions
of the applications. For example, pick a contact, take a
photo, dial a number, etc. Based on intent filters,
Android takes appropriate actions. Researchers have
been using intent filters for malware detection, since

attackers command malware to send private data to
them that requires the presence of intentions in the
intent filter part of AndroidManifest.xml file.

In DroidMat (Wu et al., 2012), various features from an
Android file including intent filters are extracted and are
analyzed. The authors utilized several machine learning
algorithms such as k-means, k-nearest neighbors and naive
bayes to develop malware detection system. Evaluation of
DroidMat exhibited an improvement over similar systems
in that time.

Zhang et al. (Luoshi et al.) published a system (named
A3) that considers several features including intent filters
in Android installation file. It then constructs a call graph
that represents flow of the Java code execution. It then uses
A* algorithm to determine the shortest path that subse-
quently shows the behavior of the malware.

DREBIN (Arp et al., 2014) presents a broad static anal-
ysis. The approach collects static features of Android
installation file including intent filters. They used support
vector machine (SVM), a machine learning algorithm, for
detection purpose. The results of the experiment showed
that DREBIN detected 94% of malware with low false alarm.

e Network Address: Attackers instructs malware to con-
tact them and report their status or send users personal
data. To do so, attackers embed address of the server,
known as command & control (C&C) server, in malicious
code of the malware. Researchers look for network
address or IP address of the C&C server in code of
Android installation files. Zhang et al. (Luoshi et al.) and
Arp et al. (Arp et al,, 2014) incorporated the network
address as one of the static features in their systems.

e Strings: Sanz et al. stated that one of the widely used
techniques in classic malware detection is analyzing
strings available in the file. They applied the same
technique for Android malware by extracting every
printable string in Android file, such as menus in the
application or the server address with which the
application connects. The authors used Vector Space
Model (VSM) (Baeza-Yates and Ribeiro-Neto, 1999) to
represent the strings as vectors in multidimensional
space. Afterward, authors used distance measures, such
as Manhattan distance, Euclidean distance and Cosine
similarity to calculate anomaly of the data. The authors
evaluated the results with 666 samples of Android ap-
plications. They achieved accuracy of 83.51% and TPR of
94% in the experiments.

e Hardware Components: DREBIN (Arp et al., 2014) used
hardware components as a static feature. As part of
AndroidManifest.xml file, applications request combi-
nations of hardware that they need in order to function,
for example, the camera or GPS. Combinations of
requested hardware imply harmfulness of the applica-
tion, for example, 3G and GPS access implies a malware
that reports location of the user to the attacker.

Other than mentioned static features, additional fea-
tures have the potential to be used as Android static
feature. Shabtai et al. (2010a) used features like .apk size,
number of zip entries, number of files for each file type,
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count of XML elements and features for each element
name.

Dynamic features

We define dynamic features as behavior of the appli-
cation in interaction with operating system or network
connectivity. There are two main types of dynamic features
used in recent works: system calls and network traffic.
Every application demands resources and services from
operating system by issuing system calls, such as read,
write and open.

Network traffic is another dynamic feature used by re-
searchers. Applications tend to connect to network to send
and receive data, receive updates, or maliciously leak per-
sonal data to attackers. Monitoring network traffic of mo-
bile devices is a way of catching culprit in the act. Based on
our analysis, 42 out of 100 papers used dynamic features.
Twenty-two papers used system calls as their dynamic
feature and 10 papers used network traffic. The remaining
10 papers selected other dynamic features, such as system
components or user interaction.

Android system call feature

There are more than 250 system calls in a Linux kernel
that are also available in Android (Burguera et al., 2046).
Analyzing system calls leads to anomaly detection in ap-
plications behavior (Feizollah et al., 2013). Applications use
system calls to perform specific tasks such as read, write
and open since they cannot directly interact with the
Android operating system. Upon issuing a system call in
user mode, Android operating system switches to kernel
mode to perform the required task. System call is the most
selected feature among dynamic features, constituting
more than half of the reviewed papers. Works such as
(Burguera et al.; Zhao et al.; Yan and Yin; Su et al., 2012;
Khune and Thangakumar, 2012) captured and analyzed
system calls to detect malicious application.

Android network traffic feature

Majority of applications, normal or malicious, require
network connectivity. In (Yajin and Xuxian, 2012), the au-
thors stated that 93% of their collected Android malware
samples need network connection in order to connect to
attackers. Additionally, Sarma et al. published a research
work in 2012 in which they analyzed permissions of
Android files. They examined over 150,000 applications
and found out that 68.50% of normal applications require
network access while 93.38% of malicious applications
require network access. Similarly, in (Yerima et al., 2014)
permissions of 2000 applications were analyzed. Over 93%
of malicious applications requested network connectivity.
It is evident that majority of applications request network
access, particularly the malicious ones. Therefore, it be-
hooves researchers to focus on analyzing network traffic for
effective Android malware detection.

Despite the effectiveness of network traffic feature in
mobile malware detection, it has not attracted researchers
attention as much as the other dynamic features. Utilizing
network traffic imposes the challenge of dealing with
massive number of network records in the dataset that

could be as many as a million records. Furthermore,
analyzing collected network traffic requires profound un-
derstanding of network architecture.

Other dynamic features

In addition to system calls and network traffic, re-
searchers have been using other dynamic features. The
following discusses other dynamic features.

e System Components: Mobile devices have similar
components as personal computers, such as CPU and
memory. Some researchers investigated detection of
Android malware using system components. In MADAM
(Dini et al., 1007), the authors analyzed CPU usage, free
memory, and running processes of mobile devices that
are considered kernel level of the operating system. In
addition, it examined user/application level features,
such as Bluetooth and Wi-Fi status of the device. The
collected data were used to train k-nearest neighbors
algorithm.

STREAM (Amos et al., 2013) was introduced in 2013 for
Android operating system. It collects data regarding system
components like cpuUser, cpuldle, cpuSystem, cpuOther,
memActive, and memMapped. It subsequently uses ma-
chine learning algorithms to train the system in order to
detect Android malware. Ham and Choi (Hyo-Sik and Mi-
Jung, 2013) and Hoffmann et al. (Hoffmann et al., 2013),
also used system components as dynamic features.

e User Interaction: Users are potential victims of mali-
cious applications. Analyzing users interaction with
applications is one of the possible solutions in malware
detection. PuppetDroid (Gianazza et al., 2014) captures
users interaction with the device (e.g. pushing a button,
zooming and navigating through pages). The authors
evaluated the system with 15 Android applications. The
goal is that after capturing user interactions related to a
malware, the system looks for similar user interaction to
detect malicious applications.

Dynodroid (Machiry et al., 2491) is another system
developed based on the user interaction analysis. It collects
users activities, such as tapping the screen, long pressing
and dragging. The evaluation of Dynodroid involves
analyzing 50 Android applications. The results found bugs
in Android applications.

As we mentioned in the static features section, intent
filters are extracted from AndroidManifest.xml file as static
feature. There is a potential to use intents as dynamic
feature. Feng et al. (Feng et al., 2013) used intents as dy-
namic feature by monitoring them at run time.

Hybrid features

We define hybrid features as a group of static and dy-
namic features that are used together in detection systems.
They are the most comprehensive features, since they
involve vetting Android application installation file as well
as analyzing behavior of the application at runtime. Blasing
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et al. (Blasing et al.,, 2010) developed AASandbox which
analyzes static and dynamic features. It extracts permis-
sions and Java code from the APK file and uses them as
static features. It then installs the application; logs system
calls, and uses it as dynamic feature. Wei et al. (Wei et al.)
published ProfileDroid in which they examined Android-
Manifest.xml and Java code as static features. They chose
user interaction, system calls and network traffic as dy-
namic features. Some of the similar works that chose
hybrid features are as follows, (Zhou et al.; Spreitzenbarth
et al.; Eder et al., 2013; Xu et al., 2013).

Android applications metadata

A few researchers opted to utilize Android applications
metadata for malware detection. We define metadata as
the information users see prior to the download and
installation of the applications, such as the applications
description, their requested permissions, their rating and
information regarding developers. Applications metadata
cannot be categorized as static or dynamic features as they
have nothing to do with applications themselves.

In WHYPER (Pandita et al., Xie), the authors access the
permissions requested by applications in the market and
used Natural Language Processing (NLP) to look for sen-
tences that justifies the need for the requested permissions.
It achieved 82.8% precision for three permissions (address
book, calendar and record audio) that protect sensitive and
personal data.

Similarly, Teufl et al. (2013) used sophisticated knowl-
edge discovery process and lean statistical methods to
analyze the metadata gathered from Google Play. The au-
thors argue that metadata analysis should be part of static
or dynamic analysis as a complement. They collected the
following data including the last time modified, category,
price, description, permissions, rating, and number of
downloads. The authors mentioned that the following data
can also be used as metadata, such as creator ID, contact
email, contact website, promotional video, number of
screenshots, promo texts, recent changes, ID, package
name, installation size, version, application type, ratings
count and application title. The authors also used machine
learning algorithms in their experiments. Definitions of
some of the aforementioned metadata are as follows.

e Last Time Modified: Applications in Google Play go
through changes and updates. The date of last modifi-
cation is a metadata.

e Category: Google Play categorizes applications based on
their types, such as games, applications and book. Each
game type further subcategorized as the action,
adventure, arcade and board.

e Description: Developers provide a brief description to
describe the main functionality of the applications.

e Permissions: Upon opting to install an application, it
prompts the user with the list of permissions that the
application requires to function properly.

e Rating: Users rate every application based on their
experience with the application. It is helpful for new
users to decide whether to download the application.

e Creator ID: Every developer has an ID in Google Play.
They use their ID to publish the applications. In case of
detecting a malicious application, Google is able to
identify the developer and terminates the developers ID.

Discussions

In this paper, we looked back at the related works with
respect to feature selection in Android malware detection.
We categorized feature selection of Android malware
detection into four groups (i.e. static, dynamic, hybrid and
metadata). Such categorization assists researchers make
decision on which features to choose. Additionally, they
get to know selected features by other researchers. In this
section, we discuss guidelines on feature selection.
Moreover, we talk about available datasets of Android
malware. We also review evaluation measures used in
recent research works. Finally, we present current chal-
lenges and open research areas to conclude our
discussions.

Feature selection guidelines

Choosing appropriate features is an important step in
conducting an experiment that determines effectiveness
and results of a research work. Android applications have
many features. We suggest the following two approaches
for feature selection based on reviewed papers.

¢ Selection based on rationalizing: As mentioned in the
Section 3.1.1, permissions are static feature and the first
line of defense in Android applications against the
attacker, which is a plausible reason for choosing it as a
feature. Among static features, research community has
been paying a considerable attention to permissions of
Android applications. This signifies that authors com-
prehended effectiveness of this feature and chose them
based on reasoning.
Java code is another static feature used widely in recent
works. Java code is the source of malicious activities of
malware and undoubtedly is a focus of research works.
However, analyzing Java code is more difficult than
analyzing permissions since attackers employ various
techniques (e.g. obfuscation, encryption) to evade
available detection methods (Petsas et al.). Thus, re-
searchers have been developing complex methods to
detect threats in Java code (Suarez-Tangil et al., 2014; Lu
et al., 2012; Deshotels et al.). We believe that using
Java code is more complex in malware detection than
permissions and requires developing aggressive
methods.
Among dynamic features, Feizollah et al. (2013) used
network traffic feature to detect mobile malware. The
authors selected three network features, namely, the
TCP size, connection duration and number of GET/POST
parameters. They provided justification for using each of
the parameters. Appropriate and justified selection of
features led to 99.94% of detection rate. Another related
work is (Shabtai et al., 2014) in which authors use
network traffic for mobile malware detection.
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However, researchers have used system call much more
frequently than other dynamic features. Although all
activities are done through system calls and selecting
them as a feature is appropriate, we argue that network
traffic of Android applications is a precious source for
mobile malware analysis and only a few of the
contemporary research works have focused on such
features (refer to Section 3.2.2).

e Selection based on feature ranking algorithms: We
found out that only 8 out of 100 reviewed papers
employed feature ranking algorithms. Feature selection
and ranking is task of selecting subset of original fea-
tures that provides the most useful and important fea-
tures based on the developed algorithms (Jensen and
Shen, 2008). The algorithm receives collected dataset
and uses mathematical calculations to rank features in
the dataset. Information gain algorithm has been widely
used for feature selection based on the entropy differ-
ence between the cases of using a feature against
otherwise (Hyo-Sik and Mi-Jung, 2013). Shabtai and
Elovici used feature ranking algorithms to select sub-
set of features from 88 collected features. They managed
to select top 10, 20 and 50 features from original dataset.
Comparably, Shabtai et al. (2014) analyze network traffic
of Android applications. They used feature selection al-
gorithms to select the most useful features among
massive features in network traffic data. Similarly, in
(Shabtai et al, 2010a) the authors collected 2285
Android applications and extracted more than 9898
features. They then used feature selection algorithms to
choose top 50, 100, 200, 300, 500 and 800 features.

Table 4 compares advantages and disadvantages of
various features based on which researchers are able to
make decisions.

Datasets

In this section, we want to emphasize on the importance
of dataset in experiments. Every experiment requires a
dataset based on which authors evaluate their proposed
system. Android malware is a relatively new research area.
The first Android malware was discovered in 2010
(Lookout, 2010). Initially, researchers did not have a solid
and standard dataset of samples to work with. Instead, they
tended to write their own malware and assessed their

Table 4
Comparison of different types of features.

Advantages Disadvantages
Static Easy to extract Obfuscation
features
Dynamic More comprehensive Code coverage
features than static features Difficult to extract
Requires rooted device
Hybrid The most comprehensive  Extraction process is
features collection of features complex
Have to extract static and
dynamic features
Applications  Easy to extract Not widely used among
metadata researchers

system on self-written malware. Other researchers tried to
collect samples through some websites, which shared
Android malware samples, such as Contagio (2014).
Therefore, the weakness was limitation of malware sam-
ples that in turn made the evaluation of their system un-
reliable. In 2012, MalGenome (Yajin and Xuxian, 2012) data
sample was released that contains 1260 malware samples
categorized into 49 different malware families. It is a
collection of malware from August 2010 to October 2011.
The availability of such a valuable data sample filled the gap
for most researchers. Based on our study, 24 out of 100
papers used MalGenome as their data sample. Table 5
shows the distribution of MalGenome usage in the
related works. It is worth noting that the authors released
MalGenome in 2012 and four research works used it in the
same year. In 2013, the number raised to more than triple of
2012, which shows that researchers welcome a standard
and solid data sample. As of reviewing related works, in
March 2014, seven papers, (Yerima et al., 2014; F-Secure,
2014; Gianazza et al., 2014; Ham and Lee, 2014; Ham
et al., 2014; Deshotels et al., 2556; Seo et al., 2014), used
MalGenome, which is half of all 2013.

However, based on the nature of malware, they change
shape and infecting technique to evade detection. There-
fore, it behooves researchers to update the data samples to
develop systems that are more effective. By introducing
DREBIN (Arp et al., 2014) in 2014, such need was fulfilled.
DREBIN is a collection of 5560 malware from 179 different
families, which were collected between August 2010 and
October 2012. In 2014, this data sample was used in 19
research works. Thus, it shows that research community is
keen on using standardized data samples.

Evaluation measures

Researchers assess the effectiveness of a proposed sys-
tem by how accurate it can detect malware using various
evaluation measures. We analyzed the measures utilized in
the literature. Table 6 shows some of the references along
with their respective measures. It is vital to discuss com-
mon evaluation measures in the research community.
Below is the definition of each one.

Confusion Matrix: Results of an experiment can be
represented in the form of a table known as confusion
matrix (Davis and Goadrich). It has four categories as
following:

e True Positive (TP): It is the number of correctly classi-
fied instances as positive. It means that how successful a
system is in detecting a malware as malicious. As the
true positive increases, the result is better.

Table 5
Use of MalGenome data sample in the reviewed works.
Year Number of papers
2010 0
2011 0
2012 4
2013 13

2014 (First Quarter) 7




A. Feizollah et al. / Digital Investigation 13 (2015) 22—37 31

Table 6
Evaluation measures in selected reviewed papers.

Evaluation measures Type of features Reference

Confusion matrix Static Features Wau et al. (2012)
Dynamic Features Su et al. (2012)
Applications Metadata Pandita et al.
Static Features Grace et al.
Dynamic Features Zhao et al.
Dynamic Features Iland et al. (2011)
Hybrid Features Kim et al. (2013)

True positive

Accuracy Static Features Wau et al. (2012)
Static Features Sanz et al. (2013a)
Dynamic Features Burguera et al.
Applications Metadata Pandita et al.

Precision Static Features Wu et al. (2012)

Applications Metadata Pandita et al.

Static Features Peng et al. (2012)

Static Features Sanz et al. (2013a)

Dynamic Features Feizollah et al. (2013)

Static Features Wau et al. (2012)

Applications Metadata Pandita et al.

ROC Static Features Peng et al. (2012)
Static Features Sanz et al. (2013a)
Dynamic Features Feizollah et al. (2013)

True positive rate

F-measure

o False Positive (FP): It is the number of incorrectly
classified instances as positive. It means that the ratio of
which the algorithm considers normal data as mali-
cious. As the false positive decreases, it shows that the
system is more accurate.

e True Negative (TN): It is the number of correctly clas-
sified instances as negative.

e False Negative (FN): It is the number of incorrectly
classified instances as negative.

Table 7 shows the confusion matrix as a table. It is worth
noting that some researchers calculate true positive that is
detection rate and false positive that is false alarm only,
since they are more important measures than others.

e Accuracy: It shows how accurate the system can detect
malware. As an example, accuracy of 0.6 implies that the
system is capable of detecting 60 malware from dataset
of 100 malware.

Accurac . P+IN (1)
Y =TP{FP+IN { N

e Precision: It is the number of instances correctly clas-
sified as class X among those classified as class X. Simply
put, the precision addresses the following question.
Based on prediction, how likely is it that the prediction
be true?

Table 7
Confusion matrix.

Actual positive Actual negative

Predicted positive TP FP
Predicted negative FN TN

P

Precision = P - FP

(2)

e Recall: It is equivalent to the true positive rate (TPR). It
assumes that there are malware in dataset and asks this
question. Is the algorithm going to detect malware?
Therefore, it measures performance of the algorithm.

P

Recall = TP+ EN

3)

o F-measure: It is weighted harmonic mean of precision
and recall. Researchers seldom used this measure in
research works.

2 x precision x recall

F — measure = —
precision + recall

e ROC: Receiver Operating Characteristic (ROC) curve in-
dicates how a detection rate change as the internal
threshold changes to generate more or fewer false
alarm. It plots intrusion detection accuracy against false
positive probability. Area Under the Curve (AUC) often
accompanies the ROC curve. It is the area under the ROC
curve. Its value varies between 0 and 1. As it approaches
1, the system has better performance.

Challenges and open research areas

Although there have been many research works in the
mobile malware detection field, there are some challenges
still available. Based on reviewed papers, we explain them
as follows. Additionally, we mention open research areas
that have potentials in researching.

Virtual environment

With the advent of mobile malware, researchers used
virtual environment to evaluate malware behavior. As time
passed by, attackers became aware of utilizing virtual en-
vironments. As a result, we are witnessing new types of
mobile malware that are knowledgeable about virtual
environment and they are able to detect if they are active in
such environment. F-Secure published a report about
Dendroid (F-Secure, 2014) in which it mentions the
awareness of this malware about virtual environment. It
hides its malicious behavior when it is in virtual environ-
ment. Similarly, Android.hehe appeared in 2014 that is
capable of detecting virtual environment and emulators
and hides its malicious behaviors (Dharmdasani, 2014).
Research works were published recently that addressed the
malware awareness about virtual environment (Petsas
et al.; Vidas and Christin). There is a need in developing
detection methods to discover such malware.
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Obfuscation

One of the techniques in mobile malware detection is
using the Java code and generating unique signatures based
on classes, fields and methods in the code. Obfuscation is a
method that attackers use in order to evade the detection
process by renaming classes, fields and methods. As a result,
the generated signature is different from what detection
systems have. Some research works have addressed such
issues and proposed methods against obfuscation such as
(Christodorescu et al.; Fredrikson et al., 2010; Kolbitsch
et al.). They used call graph that uses graph to draw the
flow of system calls. However, we cannot implement such
solutions on available tools due to low privileges of anti-
malware tools on Android. Thus, there is a need to
develop effective solutions for this existing challenge.

Code coverage

Researchers often argue that dynamic analysis of a
malware results in exposing some of its malicious behavior,
but not all of them. Code coverage is covering every
possible execution of applications code. Sasnauskas and
Regehr (2014) mention that producing highly structured
inputs that get high code coverage is an open research
challenge. AppsPlayground (Rastogi et al.) is a framework
that analysis GUI and injects random events to trigger
malicious behaviors. However, its code coverage is 33%.
Other works such as (Bierma et al., 2014; Gilbert et al.,
2014) mentioned code coverage as limitation of their
work or as future research.

Wearable devices

Wearable devices are new generation of computing
technology. It is estimated that the global market revenue
of such devices to cross USD $8 billion in 2014
(marketsandmarkets, 2014). In addition, the wearable
market is expected to grow by 350% in 2014, based on a
report from CNBC (CNBC, 2014). The operating system of
such devices is a modified version of Android, which raises
concern over security issue. Google Glass is a famous
wearable device developed by Google (Google, 2014d).
Security analysts expressed their concern over Google
Glass, since it is another Android platform and it is source of
valuable information. The main input is the camera. The
attacker could see everything the victim sees. This could
include banking login information, two-factor authentica-
tion codes or possibly extorting money from a victim by
capturing embarrassing video (Security_Watch, 2013).
Thus, it is a new research area in security field, which is
worth researching.

New standardized dataset

As discussed before, Android malware are changing
rapidly. They have moved toward stealing data and
hijacking mobile devices. Ransomware are on the rise that
steal users data or encrypt mobile devices and they de-
mand ransom. As an instance, researchers discovered a
Trojan-ransom in May 2014. It uses standard HTTP
communication and asks for money. When they ask for
money from the user, they show users image using front
camera of the device (Unuchek, 2014). Because of the
aforementioned changes in malware, researchers need to

Table 8

List of all reviewed papers.
No. Reference Type of  Year No. of

feature tested apps

1 Zhemin and Min Static 2012 1750
2 Arzt et al. (2014) Static 2014 —
3 Yerima et al. (2014) Static 2013 2000
4 Desnos (2012) Static 2012 —
5 Apvrille and Apvrille (2013) Static 2013 —
6 Aung and Zaw (2013) Static 2013 500
7 Grace et al. Static 2013 —
8 Feng et al. (2013) Static 2013 —
9 Rastogi et al. (2014) Static 2014 —
10 Faruki et al. Static 2013 6779
11 Suarez-Tangil et al. (2014) Static 2014 1231
12 Rosen et al. Static 2013 2782
13  Pengetal. (2012) Static 2012 325,036
14 Grace et al. Static 2012 118,318
15 Luetal (2012) Static 2012 5486
16  Crussell et al. Static 2012 9400
17 Sarma et al. Static 2012 158,062
18 Samra et al. (2013) Static 2013 18,174
19 Arpetal (2014) Static 2014 129,013
20 Deshotels et al. Static 2014 1100
21 Luoshi et al. Static 2013 —
22 Gascon et al. (2013) Static 2013 12,158
23 Sanz et al. (2013b) Static 2013 3013
24 Walenstein et al. (2012) Static 2012 —
25 Sanzetal. Static 2013 666
26 Wuetal. (2012) Static 2012 1738
27 Huanget al. Static 2012 125,249
28 Zhou et al. Static 2012 91,093
29 Aaferetal Static 2013 20,000
30 Lee and Jin (2013) Static 2013 —
31 Yerima et al. (2013) Static 2013 2000
32 Shabtai et al. (2010a) Static 2010 2285
33 Sahs and Khan (2012) Static 2012 2172
34 Zheng et al. (2013) Static 2013 150,368
35 Sanzetal. (2013a) Static 2013 2060
36 Zhouetal. Static 2013 84,767
37 Huanget al. Static 2014 182
38 Almobhri et al. Static 2014 405
39 Zhengetal. Static 2014 24,009
40 Sanzetal. Static 2014 2144
41 Paturi et al. (2013) Static 2013 —
42 Seo et al. (2014) Static 2014 1257
43  Rasthofer et al. (2014) Static 2014 11,000
44 Liang et al. Static 2013 52
45 Wuetal Static 2014 —
46 Tchakount and Dayang (2013) Dynamic 2013 —
47  Hyo-Sik and Mi-Jung (2013) Dynamic 2013 14,794
48 Yuetal (2013) Dynamic 2013 —
49  Shabtai and Elovici Dynamic 2010 43
50 Chekina et al. Dynamic 2012 10
51 Backes et al. Dynamic 2012 —
52 Baliga et al. (2013) Dynamic 2013 9
53 Rastogi et al. Dynamic 2013 3968
54 Burguera et al. Dynamic 2011 —
55 Yan and Yin Dynamic 2012 —
56 Dini et al. Dynamic 2012 56
57 Enck et al. (2014) Dynamic 2010 30
58 Portokalidis et al. Dynamic 2010 —
59 Choi et al. Dynamic 2013 —
60 Gianazza et al. (2014) Dynamic 2014 15
61 Ham and Lee (2014) Dynamic 2014 1257
62 Ham et al. (2014) Dynamic 2014 1257
63 Zhang et al. (2013) Dynamic 2013 1249
64 Suetal. (2012) Dynamic 2012 120
65 Maggi et al. Dynamic 2013 18,758
66 Zhao et al. Dynamic 2011 200
67 Shabtai et al. (2014) Dynamic 2014 500,000
68 Xiaoming and Qiaoyan (2011) Dynamic 2011 —
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Table 8 (continued )

No. Reference Type of  Year No. of

feature tested apps

69 Houmansadr et al. (2011)
70 Iland et al. (2011)

71 Amos et al. (2013)

72 Karami et al. (2013)

73 Damopoulos et al. (2012) Dynamic 2011 —

74 Reina et al. Dynamic 2013 1200
75 Khune and Thangakumar (2012) Dynamic 2012 —

76  Zonouz et al.2013) Dynamic 2013 —

77 Isohara et al. (2011) Dynamic 2011 230
78 Feizollah et al. (2013) Dynamic 2013 1257
79 Feizollah et al. (2014) Dynamic 2014 1000
80 Hoffmann et al. (2013) Dynamic 2013 —

81 Luetal (2014) Dynamic 2014 331
82 Linetal. (2013) Dynamic 2013 100
83 Shabtai et al. (2010b) Dynamic 2010 5

84 Veen (2013) Dynamic 2013 —

85 Bente (2013) Dynamic 2013 —

86 Machiry et al. Dynamic 2013 50

Dynamic 2011 —
Dynamic 2011 18
Dynamic 2013 1738
Dynamic 2013 20

87 Jangetal. Dynamic 2014 709

88  Spreitzenbarth et al. Hybrid 2013 36,000
89 Zhou et al. Hybrid 2012 204,040
90 Moonsamy et al. (2013) Hybrid 2013 1227

91 Weietal Hybrid 2012 27

92 Eder et al. (2013) Hybrid 2013 1260
93 Blasing et al. (2010) Hybrid 2010 —

94 Kim et al. (2013) Hybrid 2013 1003
95 Xu et al. (2013) Hybrid 2013 100,000
96 Zheng et al. Hybrid 2012 19

97 Shalaginov and Franke Hybrid 2014 604

98 Guido et al. (2013)
99 Teufl et al. (2013)
100 Pandita et al.

Metadata 2013 —
Metadata 2013 —
Metadata 2013 —

evaluate new systems on new types of malware, rather
than old ones. It benefits the research community to pub-
lish Android malware dataset similar to (Yajin and Xuxian,
2012; Arp et al., 2014) along with comprehensive analysis
of the malware. So that researchers develop effective sys-
tems based on the analysis.

Conclusion

In this review paper, we analyzed 100 papers with the
perspective of feature selection in Android malware
detection. We categorized features of Android malware
into four groups. The first group comprised of static fea-
tures that are pertaining to Android installation file itself
prior to installation on the device. The second group in-
cludes dynamic features that are pertaining to the behavior
of the application after installation. The third group is
hybrid features that are combination of both static and
dynamic features. The last group was metadata that is any
related data on Google Play. We examined each group in
details. We also delved into discussing datasets used in the
literature along with the evaluation measures utilized in
recent works. Furthermore, we listed all the reviewed pa-
pers in Table 8 for researchers to have a glance view of
recent works. It is worth mentioning that some papers
introduced novel methods, however due to lack of malware
sample, authors could not test their systems thoroughly
(e.g. (Shabtai et al., 2010b)).
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