
ww.sciencedirect.com

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 1 9 2e2 0 5
Available online at w
ScienceDirect

journal homepage: www.elsevier .com/locate/cose
A Permission verification approach for
android mobile applications
Dimitris Geneiatakis a,*, Igor Nai Fovino a, Ioannis Kounelis a,b,
Paquale Stirparo a,b

a Institute for the Protection and Security of the Citizen, Joint Research Centre (JRC), European Commission,

Ispra, VA, Italy
b Royal Institute of Technology (KTH), Stockholm, Sweden
a r t i c l e i n f o

Article history:

Received 2 January 2014

Received in revised form

6 October 2014

Accepted 14 October 2014

Available online 7 November 2014

Keywords:

Android

Permissions

Security

Instrumentation

Privacy

Risk assessment
* Corresponding author.
E-mail addresses: dimitrios.geneiatakis@

kounelis@jrc.ec.europa.eu (I. Kounelis), pasq
http://dx.doi.org/10.1016/j.cose.2014.10.005
0167-4048/© 2014 Elsevier Ltd. All rights rese
a b s t r a c t

Mobile applications build part of their security and privacy on a declarative permission

model. In this approach mobile applications, to get access to sensitive resources, have to

define the corresponding permissions in a manifest. However, mobile applications may

request access to permissions that they do not require for their execution (over-privileges)

and offer opportunities to malicious software to gain access to otherwise inaccessible re-

sources. In this paper, we investigate on the declarative permissions model on which se-

curity and privacy services of Android rely upon. We propose a practical and efficient

permission certification technique, in the direction of risk management assessment. We

combine both runtime information and static analysis to profile mobile applications and

identify if they are over-privileged or follow the least privilege principle. We demonstrate a

transparent solution that neither requires modification to the underlying framework, nor

access to the applications' original source code.We assess the effectiveness of our approach,

using a randomly selected varied set ofmobile applications. Results show that our approach

can accurately identify whether an application is over-privileged or not, whilst at the same

time guaranteeing the need of declaring specific permissions in the manifest.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Mobile Internet is expected to overtake the usage of land line

Internet (Mobithinking, 2013). The reason of this success is not

only due to the evolution of smartphones and their underlying

infrastructures, but also to the one-stop shopmodel on which

the app-stores (Google Play, Apple store (iOS), etc.), are based,

enabling the users to purchase the desired application and

install it directly on their phones without any additional
jrc.ec.europa.eu (D. Gen
uale.stirparo@jrc.ec.euro

rved.
interventions. These stores, before publishing any applica-

tion, scrutinize it to identify possible malicious activities by

using particular security techniques such as the Google's
Bouncer (Android and security, 2012). Though users trust

these centralized stores and their security approaches, it is

almost impossible to be 100% sure of the secureness of any

given application. For instance, Miller and Oberheide (2012)

present a technique to bypass Google's Bouncer security

checks. A similar problem was faced also by Apple's store

(Ducklin, 2012).
eiatakis), igor.nai-fovino@jrc.ec.europa.eu (I.N. Fovino), ioannis.
pa.eu (P. Stirparo).

mailto:dimitrios.geneiatakis@jrc.ec.europa.eu
mailto:igor.nai-fovino@jrc.ec.europa.eu
mailto:ioannis.kounelis@jrc.ec.europa.eu
mailto:ioannis.kounelis@jrc.ec.europa.eu
mailto:pasquale.stirparo@jrc.ec.europa.eu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2014.10.005&domain=pdf
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2014.10.005
http://dx.doi.org/10.1016/j.cose.2014.10.005
http://dx.doi.org/10.1016/j.cose.2014.10.005
think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

1 http://code.google.com/p/android-app-analysis-tool/.

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 1 9 2e2 0 5 193
These threats acquire a high relevance because today

smartphones can be considered mobile personal inventories,

managing an enormous amount of personal information. This

fact, combined with the always online nature of mobile de-

vices makes smartphones a valuable target for attackers. For

example, spying applications can collect user's position or

steal personal information and sell them to marketing com-

panies (FBI warns loozfon, 2012). Even well-known applica-

tions may take advantage of their access to “sensitive”

resources formanipulating otherwise personal information as

shown in various researchworks (Stirparo and Kounelis, 2012;

Enck et al., 2010; Gibler et al., 2012).

In other cases a mobile applicationmight be over-privileged;

meaning that it requests more permissions than what it

actually needs to accomplish its task. As a result, these ap-

plications might be requested by malicious applications to act

on behalf of them (Orthacker et al., 2012) and provide access to

otherwise private information. In that direction, an adversary

could build an over-privileged legitimate application with

carefully selected set of “needless” permissions that will

transform the application into amalware as soon as an update

on the operating system occurs (Xing et al., 2014). Further,

end-users might try to install applications from third party

stores, which do not scrutinize the functionality of the pro-

vided applications at all.

These facts show that the presence of security analysis

mechanisms at the store side do not guarantee the security

(e.g., lack of malicious operations) and the privacy of end-

users personal data. To identify possible mis-configurations

and over-privileges in mobile applications researchers focus

on different approaches such as:

� Static analysis: Either the source code or the binary of an

application are analyzed to identify possible sources and

sinks of data leakages (e.g., (Bartel et al., 2012a; Felt et al.,

2011; Rosen et al., 2013)) without executing it.

� Dynamic monitoring: The behavior of an application is

examined at runtime (e.g., (Enck et al., 2010; Berthome

et al., 2012)).

� Scanning applications: Third party applications, like

Permission Explorer (Permission explorer), are able to scan

all the installed applications and generate a user friendly

report notifying users for the usage of the requested

permissions.

� Operating systems privileges enforcement: Operating sys-

tems enforce specific mechanisms in order to eliminate

personal data manipulation. For instance, Android OS re-

quests the user to give explicit authorization access to

application's specified resources during installation pro-

cedure, otherwise the installation fails.

Although these approaches can either identify over-

privileged applications or eliminate the chances of manipu-

lating personal data, we believe that an orthogonal approach

is required in order to identify and validate the outcomes of

such techniques. Static analysis techniques e.g., (Bartel et al.,

2012a; Felt et al., 2011; Rosen et al., 2013), usually do not take

into account the runtime context, making them prone mainly

to false positive identifications or requiring, to be effective,

access to applications' source code or/and modification to the
underlying framework. For instance, Felt et al. (2011) modify

the Android framework to log the permission checks, while

solutions such as TaintDroid (Enck et al., 2010) do not focus on

identifying over-privileged applications. Furthermore, a ser-

vice that guarantees the least privilege principle for any given

mobile application with a specific degree of certainty is lack-

ing from the current security approaches.

In this work, we elaborate on identifying over-privileges,

and validating the need of declaring specific permissions in

the manifest of any given Android application, in the context

of least privilege principle, by combining static analysis and

runtime information. With such an approach, we rely on the

advantages of exhaustive static analysis with the discrimi-

nation power of dynamic analysis, to provide to the end-user a

useful instrument to understand the potential risks associ-

ated to mobile applications of uncertain provenance. To the

best of our knowledge, this is the first work that proposes a

risk assessment framework evaluating application's attack

surface exploitation probability due to the permissions

declared in the application's manifest.

We focus on the Android OS because it is among the most

used operating systems in the market, and it is considered a

main target for attackers (Kaspersky security bulletin, 2012).

We capitalize on the advantages of Dexpler (Bartel et al.,

2012b) and Soot (Vall�ee-Rai et al., 1999) frameworks to

reverse engineer and analyze any given Android mobile

application both statically and dynamically. We record and

instrument all the possible Application Programming In-

terfaces (APIs) identified in the reversed engineered code in

order to monitor the APIs executed at runtime. Relying on the

extracted information we audit the permissions included in

the application's manifest and classify application's exposure

to over-privileged flaws with certain confidence level. This

approach complements other solutions, such as (Bartel et al.,

2012a; Felt et al., 2011; Rosen et al., 2013; Berthome et al., 2012),

and can accurately justify whether or not the application's
request to access a specific resource is required. In this way,

we also magnify if the application follows the least privilege

principle. Results show that our approach can effectively

evaluate if any given Androidmobile application that provides

access to sensitive resources can be manipulated.

Themain contributions of this work can be summarized in

the following:

� We present a risk assessment framework with respect to

permission requesting access to sensitive resources. The

proposed framework automatically assures whether an

application follows the least privilege principle, and iden-

tifies over-privileges with certain confidence level.

� This is the first work on Android mobile application's per-

missions assessment that (a) links static and runtime in-

formation, (b) operates transparently with respect to the

OS and the application's original source code, and (c) re-

quires little or no supervision.

� Our solution's software is freely available.1 We believe this

can facilitate experimentation with detecting over-

privileged applications.

http://code.google.com/p/android-app-analysis-tool/
http://dx.doi.org/10.1016/j.cose.2014.10.005
http://dx.doi.org/10.1016/j.cose.2014.10.005
think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 1 9 2e2 0 5194
The rest of the paper is structured as follows. In Section 2

we provide an overview of the Android OS permission secu-

rity model and we describe the security issues introducing the

over-privileged applications in Section 3. In Section 4 we

outline our framework for identifying over-privileged appli-

cations by combining static and dynamic analysis informa-

tion, while in Section 5 we evaluate the proposed framework

in terms of effectiveness. We comment on the findings of our

approach in Section 6 and we overview other similar works in

Section 7. In Section 8 we illustrate the limitations of our

approach and present some pointers for future work. Finally,

in Section 9 we draw our conclusions.
Fig. 1 e Android software modular architecture.

2. Android permission-based security model

The core of the Android OS is built on top of the Linux kernel.

This enables it to provide strong isolation for protecting users

data, system resources and avoiding conflicts, for both Java

programming language and native Android mobile applica-

tions. Fig. 1 overviews the Android OS architecture.

The Android OS system runs each application under the

privileges of different “user”, and assigns a unique user ID to

each of them. This approach differs from other operating

systems where multiple applications run under the same

user's permissions. By default, applications are not allowed to

execute functions that might affect other applications

or users, and they have access to a limited set of resources.

Applications must mandatory declare in a manifest (see

Listing 12) all the “sensitive” operations that can take place in

the course of execution; the users, during the installation, are

requested to endorse them, otherwise the installation fails. In

case an application executes a protected feature that has not

been declared in the manifest, a security exception will throw

during execution.
Listing 1: An example of a real Android mobile application

manifest records. The application requests access to various

resources such as Camera, Internet, Calendar, etc.
3. Threat model: permissions' Back-Doors

As mobile applications manage a wide range of personal in-

formation, such as unique identifiers, location, call history,
2 The proper syntax is the following: uses-permission android:
name ¼ permission-name.
text messages, emails, etc., they generate new opportunities

for profiling users' and manipulating these data in return of

financial benefit in different ways. Not only malicious appli-

cations (malware) misuse such information, but even legiti-

mate ones. For example, the Twitter mobile application sent out

users' personal information, without their consent (Mobile

apps take data without permission, 2012). Users' data can be

modified or even lost in case that such applications are

allowed to execute sensitive operations e.g., delete, modify,

etc. A detailed analysis of personal data manipulation in mo-

bile applications can be found in Enck et al. (2010), Gibler et al.

(2012), Stirparo and Kounelis (2012).

In other cases, malware might exploit legitimate applica-

tions' configuration vulnerabilities, and/or manipulate their

permissions to gain access either to private information or to

other protected functionalities that should provided only to

legitimate applications. This, for instance, can be achieved
through inter-process communication as demonstrated in

Orthacker et al. (2012), without the need to exploit a vulnera-

bility, neither at the application nor at the OS level. In that

direction, application that declared more permissions than

those they actually need (over-privileged application) can be

transformed silently to malware, whenever an operating

system or an application update occurs. In that case, if the

needless permissions do not exist in the operating system

where the application will be installed they will be ignored.

These permissions will be silently granted as soon as an up-

date occurs driving to privilege escalation through updating

(pileup) (Xing et al., 2014), without users' consent.

http://dx.doi.org/10.1016/j.cose.2014.10.005
http://dx.doi.org/10.1016/j.cose.2014.10.005
think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

Fig. 3 e A high level procedure for repackaging Android

mobile applications.
Fig. 2 e Example of exploiting vulnerabilities, by a

malware, on the method C in order to execute the method

U that is “out of the scope” of the application. By the term

“out of the scope” we mean that the malware is taking the

advantage of the application's needless privileges to

execute the method U.

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 1 9 2e2 0 5 195
In another approach, the attackermight request access to a

set of permission explicitly during the installation pretending

the legitimacy of the installed application. In that case, a

malware might exploit a specific vulnerability that will allow

the execution of anAPI that otherwisewould not be possible to

execute, as illustrated in Fig. 2. Webview, for example, is

vulnerable to malicious input, as referred in Stephan and

Siegfried (2013). Consequently, the malware, in that instance,

can execute any API, if the exploited application has the

appropriate permissions.

Attackers might follow such approaches in an attempt to

hide their malicious activity and evade any intrusion detec-

tion service. These security flaws come into existence mainly

due to the fact that the Android OS assumes that an applica-

tion's permission restricted functionality, will be properly

used by applications. Moreover, it should be noticed that such

threats do not focus on software vulnerabilities in OS or in the

application layer. Instead, they exploitmisconfiguration at the

application layer that currently users are not in the position to

validate. As a result malicious applications will try to benefit

from such kind of security weaknesses to access sensitive

services and data without being noticed by the end user, in an

architecture where the least privilege principle is believed to

be strictly adopted. Thus, we defend that, to enhance the se-

curity and privacy level of the end-user, the identification of

over-privileged applications is of high importance.
4. Proposed approach

As described in the introduction, we are interested in defining

a method allowing to effectively profile and analyze mobile

applications, in search for over-privileges. The approach

adopted is based on application repackaging to verify the real

need of requesting and granting access to all the “sensitive”

Android's APIs.3 This approach requires neither access to the
3 Sensitive APIs, as defined by Android OS, are the ones that
need to be declared in the manifest.
applications' original source code nor modification of the un-

derlying framework. We rely (a) on static analysis to compute

the (maximum) set of permissions that might be used by the

examined application, and (b) on dynamic analysis to validate

their use. The outcomes of both static and dynamic analysis

are combined and compared with the manifest's permission

set to deduce whether the application is over-privileged or

not.

4.1. Application analysis and repackaging

Android mobile applications target the Dalvik, instead of pure

Java, bytecode. Java based applications can be reverse-

engineered by using tools such as Jad (Jad java decompiler)

and ASM (ASM). Similarly, the android mobile applications

can be analyzed and modified by using tools such as ApkTool

(A tool for reverse engineering android apk files), Androguard

(Androguard), Dexpler (Bartel et al., 2012b) and Dex2Jar

(Dex2Jar). Note that in most cases Dalvik bytecode is not

transformed to the original Java code but to an intermediate

format, depending on the tool's capabilities. In this work, we

rely on Dexpler (Bartel et al., 2012b) a Soot framework (Vall�ee-

Rai et al., 1999) based tool for analyzing, modifying and

repackaging android mobile applications. In this framework,

any Android mobile application can be given, as input, to a

properly designed analysis driver to analyze statically appli-

cation's reversed engineered code, and introduce additional

functionality to it, depending on the requirements.

Consider for instance the case where we are interested to

record (e.g., in a file) the calls made towards the getDeviceId

API at runtime. The mobile application is transformed to

Jimple interpretation (Vallee-Rai and Hendren, 1998) through

Dexpler, which enables the usage of Soot framework (Vall�ee-

Rai et al., 1999). The analysis driver iterates on the code to

identify the method getDeviceId in which the monitor code

is injected. This task is accomplished by the code illustrated

in Listing 2. As soon as the analysis is completed the appli-

cation can be signed, installed and executed on the Android

phone.

Listing 2: An example of Soot framework code to analyze

an Android mobile for the identification of a particular

method such as getDeviceId.

http://dx.doi.org/10.1016/j.cose.2014.10.005
http://dx.doi.org/10.1016/j.cose.2014.10.005
think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 1 9 2e2 0 5196
The general procedure for analyzing and repackaging an

Android mobile application is illustrated in Fig. 3.

4.2. Theoretical framework

In this sectionwe present the theoretical framework onwhich

we based our approach.

An application is considered over-privileged if and only if

there is a permission object in the manifest set (Mp) which is

not listed in the static analysis permission set (Sp) (i.e., the set

compiled during the static analysis of the application), as

illustrated in Equation (1). The over-privilege set is computed

as the intersection between the Mp and Sp as illustrated in

Equation (2). Complementarily, an application is marked as

non over-privileged if and only if the static, dynamic and

manifest permission sets match as illustrated in Equation (3).

These cases are graphically illustrated in Fig. 4 as well. In the
Fig. 4 e Definition of validated non over-pri
case where the manifest (Mp) and the static (Sp) permission

sets are equal, but they are a superset of the dynamic (Dp)

permission set (refer to Equation (4)) then a specific set of the

examined application's permissions, according to Equation

(5), might be susceptible to over-privileged flawswith a certain

confidence level.

Sp3Mp/Over� privileged (1)

MpnSp/Over� privilege� permission� set (2)

Mp ∩ Sp ∩ Dp ¼ Mp/Non� over� privileged (3)

Dp3
�
Mp ¼ Sp

�
/Susceptible� attacks (4)

MpnDp/Permission� set� susceptible� to� attacks (5)
vileged and over-privileged application.

http://dx.doi.org/10.1016/j.cose.2014.10.005
http://dx.doi.org/10.1016/j.cose.2014.10.005
think
高亮

Table 1 e Android mobile applications privileges risk
assessment.

Classification-id Assessment Exposure probability

(1) Over-privileged 1

(2) Over-privileged Refer to Equation (7)

(3) Non over-privileged 0

4 http://developer.android.com/tools/help/monkey.html.

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 1 9 2e2 0 5 197
Indetails,weauditwhether theSp is a subsetof theMpornot

(refer to Equation (1)); the difference between the Mp and Sp
generates the over-privileged set, according to Equation (2). If

this is the case, then we deduce that the application is over-

privileged with probability 1. This is due to the fact that one

ormore permission objects belonging toMp are not mapped to

any of the permission objects of the Sp identified in the reverse

engineered application. If not, we examine theDp and compare

it with the Mp and the Sp relying to Equations (3)e(5). In that

case,wededuce that theapplication isnot over-privilegedwith

probability of 1 if these sets are equal, since the runtime in-

formationmatches with static analysis outcome, according to

Equation (3). This means that all the sensitive methods,

requesting specific permission to be executed, were reached

during runtime, and thus (a) the examined application is not

susceptible to over-privileged threats, and (b) it is guaranteed

that the application respects the least privilege principle.

In the case that the Dp is a subset of the Mp the examined

application, according to Equation (4), is susceptible to over-

privileged flaws with a certain confidence level. This might

also correspond to a dynamic analysis false identification. To

mitigate such false identifications due to the limited coverage

that, in some situations, might be achieved during the dy-

namic analysis, the final set of the over-privileges combines

the outcomes of the static and dynamic phases according to

Equation (6).

�
MpnDp

�
∩
�
MpnSp

�
/Final� over� privileged� set (6)

Note that if any of the sets computed by Equations (2) and

(5) equals to an empty set, thenwe rely only on the non empty

set to compute the final over-privilege set.

4.3. Permissions' risk & false identification assessment

To assess possible false identifications that our approach

might generate and measure the exposure of the examined

application to over-privileged threats we rely on the attack

surface introduced by the set of privileges not reached during

the dynamic analysis phase (refer to Equation (7)), where S

corresponds to the percentage of the permissions triggered

during the execution according to the Equation (8).

Ea ¼ 1� S (7)

S ¼
��Mp

��� ��Dp

��
��Mp

�� (8)

It should be mentioned also that if the static analysis set is

a superset of the manifest one, we analyze only the manifest

set. This is because Android OS will throw a security excep-

tion, according to its security design, for any sensitive API

having no declaration of the permissions needed for its

execution in the application's manifest. Table 1 summarizes

the risk assessment classes provided by the proposed

framework.

4.4. Identify over-privileged applications

To determine over-privileged applications, we integrated the

Dexpler (Bartel et al., 2012b) and Soot framework (Vall�ee-Rai

et al., 1999) with an analysis driver that:
1. Identifies and records all the methods existing in the

reversed engineered applicationd Static analysis phase.

2. Injects small pieces of monitoring code before every API

call provided by the Android OS and records its name in the

private storage area of the analyzed applicationdDynamic

analysis phase. This allows us to run the application

without the need to modify the manifest of the original

application.

The output of the analysis extracts the manifest's permis-

sion set (Mp) and generates a new Android mobile application

package, the instrumented one, which records (a) all the

possible methods that exist in the reversed engineered

application, and (b) the methods executed at runtime. Note

that the reversed engineered code does not necessarily

correspond to the application's original source code, however,

the API calls will be the same of the original code.

The instrumented application can be executed either

manually or automatically relying on the Android monkey

test suite,4 which is able to generate and inject to the exam-

ined application pseudo-random streams of user events (e.g.,

clicks, touches,etc.) in a random but repeatable test cases. The

Monkey test suite is an official Android framework that can be

used by developers for checking application's robustness

before publishing it. This way, we reproduce common real life

situations and record the executed methods. In case that

additional inputs are available, e.g., when users' exercise the

application, they can be injected through the virtual device

drivers available in Android. When the execution is

completed, we create the methods (APIs) permission map for

both the static and the dynamic analysis, and we determine:

1. The set of permissions included in the reversed engineered

application, correspond to the static analysis permission

set (Sp).

2. The permission set required for the examined applications

execution, correspond to the dynamic analysis set (Dp).

This is achieved by identifying the signature of the

executed call in the permission mapping database, based on

the permission mapping published in Felt et al. (2011). After-

ward, we compare the permissions sets identified in the pre-

vious step with those included in the manifest to deduce

whether or not the examined application is over-privileged.

The whole procedure to identify an over-privileged applica-

tion is illustrated in Fig. 5. As soon as the sets Mp, Sp and Dp

have been produced we assess applications' permissions

exposedness based on the theoretical framework described in

Section 4.2.

http://developer.android.com/tools/help/monkey.html
http://dx.doi.org/10.1016/j.cose.2014.10.005
http://dx.doi.org/10.1016/j.cose.2014.10.005
think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

Fig. 5 e Proposed permission verification approach. The soot framework analyzes the mobile application and inserts small

pieces of code to monitor the executedmethods (1). Every time the application is executed all the methods are logged (2) and

analyzed (3,4) in order to determine whether the application uses all the requested permissions (5), according to the

proposed theoretical framework.

5 Recall that the different classes of our risk assessment
approach are summarized in Table 1.

6 We do not explicit refer to the names of the examined ap-
plications, instead we encoded their names as follows: Category
(application number).

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 1 9 2e2 0 5198
5. Evaluation

We analyzed 265 Android mobile applications, both on real

device and on Android emulator running Android 4.2.2

version, to demonstrate and evaluate the effectiveness of our

approach in (a) classifying applications as over-privileged or

not, and (b) assess the probability to be exploited due to flaws

introduced by over-privileges. The examined applications

were randomly selected, belonging to the top 500 in their

categories on the Google Play, and were distinguished based

on their functionalities as follows:

1. Expenses: Manage users' financial transactions.
2. Linguistic: Provide language tests.

3. Shopping: Manage daily shopping needs.

4. Entertainment: Applications for entertainment such as

games.

5. Accessories: Support users' in various daily tasks (e.g.,

notes, bookmarks, etc.).

6. Hello: A reference application developed by us, which

shows a hello-world message and writes it in the external

secure digital (SD) storage.

We exercise applications automatically based on the An-

droid's Monkey test suite, by injecting 1500 different events, to

extract the runtime information, which includes the called

methods, while the static analysis information was generated

during instrumentation phase (see Fig. 5).

The procedure for generating the Sp and Dp sets during the

evaluation is illustrated in Fig. 6. Results, as summarized in

Fig. 7, show that the majority of the examined application

(87%), are over-privileged by design (classification cat-

egoryd1). This practice could be explainedwith the attitude of

developers to ask for the maximum number of permissions

during the first installation, to avoid to request for extra per-

missions when the application is updated.

Another 10% belong to over-privileged (classification cat-

egoryd2), while only 3% of the examined applications were
validated as non over-privilege (classification categoryd 3).5

These tests clearly illustrate the feasibility of our approach.

Obviously, the analysis of 265 applications cannot be consid-

ered a statistical population from which derive a general

trend, but indeed this is not the scope of this work.

In more detail, Table 2 summarizes and represents indic-

ative outcomes6 of our analysis with regard to the effective-

ness of our approach to identify whether or not a given

application is over-privileged during our testing campaign.

The most common needless permissions the over-privileged

applications request are illustrated in Table 3, while Table 4

indicates the over-privileged permissions granted to the

same set of applications as identified in the different phases of

our approach. For example, the examined over-privileged

application Shopping (3) requests access to permissions such

as the READ_SMS and the READ_CONTACTS. However, in re-

ality there was not any direct functionality using these per-

missions. Consequently, malware might exploit these

permissions to gain access to otherwise private information.
6. Discussion

To the best of our knowledge this is the very first work that

investigates the possibilities of validating the usage/need of

declaring specific permissions in the manifest of Android

mobile applications, by combining static and runtime infor-

mation, in the direction of a risk assessment approach. We

remind here that the Android OS uses the permissions as a

mechanism to protect access to “sensitive” APIsdresources.

In this way, if an application follows the least privilege prin-

ciple (Bishop, dec 2002) a potential exploitation would have a

minimum impact. However, as mentioned previously, the

http://dx.doi.org/10.1016/j.cose.2014.10.005
http://dx.doi.org/10.1016/j.cose.2014.10.005
think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

Fig. 6 e APIsdPermissions map example generation. The same is the procedure of both static and dynamic analysis.

Fig. 7 e Our approach classification distribution for 265

examined mobile applications.

Table 3 e Most used permissions among over-privileged
applications as identified by our approach.

Permission type Usage by application

WRITE_EXTERNAL_STORAGE 11%

RECEIVE_BOOT_COMPLETED 9%

READ_PHONE_STATE 9%

ACCESS_NETWORK_STATE 18%

ACCESS_COARSE_LOCATION 11%

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 1 9 2e2 0 5 199
existence of needless permissions offers the chances to

bypass this protection mechanism. Malicious application

might leverage on this source of potential threats to access
Table 2 e Indicative assessment outcomes for a sample of diff
solution. We identify both the number of the methods that ex
executed during the evaluation. The examined applications ar

Type Methods Executed methods avg.

Expenses(1) 1830 558

Entertainment(1) 1873 31

Accessories(1) 559 113

Expenses(2) 3910 925

Linguistic 2105 605

Shopping(1) 1848 596

Hello 2113 18

Shopping(2) 505 136

Shopping(3) 257 125

Shopping(4) 211 132

Entertainment(2) 2180 74

Accessories(2) 396 138

Accessories(3) 718 11
either personal data or some other “sensitive” functionality,

as demonstrated for instance in Xing et al. (2014). The out-

comes of our tests reveal that it is quite common to have

applications requesting access to permissions that are not

indeed required for carrying out their tasks.

With regards to the accuracy with which this approach is

able to classify an application as over-privileged or not, we

rely on legacy Intrusion Detection Systems error assessment

metrics, namely False Positive (FP) and False Negative (FN) (Gu

et al., 2006). The first one is related to applications classified as

over-privileged, but in reality they are normal applications,

while the latter involves applications classified as normal, but

belonging instead to the set of over-privileged applications'.
erent types of applications achieved by the proposed
ist in the reversed engineered applications code and those
e classified to the corresponding over-privilege class.

Over-privileged (classification) Exposure probability

Yes (1) 1

No (3) e

Yes (1) 1

Yes (1) 1

No (3) e

Yes (1) 1

No (3) e

No (3) e

Yes(1) 1

No (3) e

Yes (1) 1

No (3) e

Yes (2) 0.66

http://dx.doi.org/10.1016/j.cose.2014.10.005
http://dx.doi.org/10.1016/j.cose.2014.10.005
think
高亮

think
高亮

Table 4 e Over-privilege list as identified by our approach in all the stages.

Application type Static setdEquation (3) Dynamic SetdEquation (5) Final setdEquation (6)

Expenses(1) READ_EXTERNAL_STORAGE READ_EXTERNAL_STORAGE READ_EXTERNAL_STORAGE

ACCESS_COARSE_LOCATION ACCESS_COARSE_LOCATION ACCESS_COARSE_LOCATION

READ_PHONE_STATE

Entertainment(1) e e e

Accessories(1) WRITE_EXTERNAL_STORAGE WRITE_EXTERNAL_STORAGE WRITE_EXTERNAL_STORAGE

WRITE_HISTORY_BOOKMARKS WRITE_HISTORY_BOOKMARKS WRITE_HISTORY_BOOKMARKS

Expenses(2) CAMERA CAMERA CAMERA

READ_CALENDAR READ_CALENDAR READ_CALENDAR

RECEIVE_BOOT_COMPLETED RECEIVE_BOOT_COMPLETED RECEIVE_BOOT_COMPLETED

WRITE_CALENDAR WRITE_CALENDAR WRITE_CALENDAR

WRITE_EXTERNAL_STORAGE

READ_CONTACTS

VIBRATE

Shopping(1) READ_CONTACTS READ_CONTACTS READ_CONTACTS

READ_PHONE_STATE READ_PHONE_STATE READ_PHONE_STATE

RECEIVE_SMS RECEIVE_SMS RECEIVE_SMS

SEND_SMS SEND_SMS SEND_SMS

Linguistic e e e

Hello-World e e e

Shopping(2) e e e

Shopping(3) READ_CONTACTS READ_CONTACTS READ_CONTACTS

READ_SMS READ_SMS READ_SMS

Shopping(4) e e e

Entertainment(2) e ACCESS_NETWORK_STATE INTERNET

e INTERNET READ_PHONE_STATE

READ_PHONE_STATE

Accessories(2) e e e

Accessories(3) e ACCESS_NETWORK_STATE ACCESS_NETWORK_STATE

VIBRATE VIBRATE

7 The discussion of false negatives in Stowaway is considered

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 1 9 2e2 0 5200
Since we do not have the original source code of the examined

applications we cannot have an accurate indication of the

applications code covered during dynamic analysis. This is

because Java application's reverse engineered “source code”

consists of thousands of reachable methods, even for the

single Java Hello-World application (Ali and Lhot�ak, 2012). This

is also the case for the Android mobile applications relying on

Java as indicated in our results (refer to Table 2). Thus, we

assess the false identification rate in terms of permissions not

triggered during the execution, as described in Section 4.

Applications classified in categoryd1 are vulnerable to

over-privileged flaws with probability 1dmeaning no false

identifications. This is due to the fact that the manifest con-

tains permissions that are not mapped to any API in the

examined application' reverse-engineered code. Similarly, the

classification of not over-privileged applications (categoryd3)

do not include any false identification, since the manifest's
permissions of the examined application were matched not

only with those determined in the static analysis phase, but

alsowith those of the dynamic one. Finally, in the caseswhere

the applications were classified as over-privileged in cat-

egoryd2, we assess the false positives in terms of the per-

missions' not reached during the dynamic analysis. That is

equivalent to the exposure probability. For instance, in case

of the application we named Accessories(3) in our tables,

the false positive assessment is 66% because during the

execution we did not reach 2 of the 3 permissions declared

in the manifest. This is also the case for the permissions false

positive identification themselves. However, if the map of
APIsdPermission in which we rely on is incomplete, then the

proposed approach will generate a false positive.

With this approach we combine the advantages of static

and dynamic analysis in order to eliminate false identifica-

tions, both for the application and the permission classifica-

tion itself. On the one side, the dynamic analysis part

guarantees the correctness of the non over-privileged

applicationd meaning that applications follow the least

privilege principle. Moreover, the dynamic analysis part offers

the ability to assess possiblemis-classifications in terms of FN

that the static analysis module might generate if it is

employed by itself. The FN equals to the exploitation proba-

bility in terms of non-reachable permissions, according to

Equation (7). Such cases are generated when Mp¼Sp but actu-

ally parts of the permissions target a new version of the OS, as

demonstrated in the pileup flaw (Xing et al., 2014). On the

other side, the static analysis magnifies all the possible per-

missions and guarantees the correctness of the over-

privileged identification classified in categoryd1. This

means that static and dynamic analysismodules complement

each other.

Moreover, relying on the proposed approach, the false

positive alarms generated by other static analysis approaches

can be eliminated. For instance, in Stowaway (Felt et al., 2011),

a solution that relies on static analysis, authors mention that

their approach generates false positives.7 This is due to the

fact that Stowaway does not take into account which parts of
as a part of Stowaway authors' future work.

http://dx.doi.org/10.1016/j.cose.2014.10.005
http://dx.doi.org/10.1016/j.cose.2014.10.005
think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 1 9 2e2 0 5 201
the code are executed. We encountered such a case

when we used Stowaway to analyze the Hello application. In

details, Stowaway identified the permission WRITE_-

EXTERNAL_STORAGE as unnecessary, and characterized this

application as over-privileged. However, the application

needed this permission to execute a write operation in the

external storage. We are aware of this since we developed the

Hello application in order to use it, among the others, as

a demonstrator of the proposed approach. Stowaway, also,

assumes the need of the WRITE_EXTERNAL_STORAGE

permission if they identify an API call that returns a path

to the SD card directory such as Environ-

ment.getExternalStorageDirectory(). However, this

does not seem to be the case, since we use this particular API

in our demo Hello application, while the Stowaway online

analysis tool considers the WRITE_EXTERNAL_STORAGE

permission as an extra permission.

Table 5 overviews the outcomes provided by Stowaway, for

the same sample set of applications we examined with our

framework, and presented as indicative outcomes in this

work. As results Stowaway is less accurate in terms of deter-

mining over-privileges. We compared explicitly the outcomes

of our approach only with the Stowaway solution as no other

solution provides the code or an online service for analyzing

applications' permissions.

As additional consideration, one might argue that

permission scanning applications can determine which per-

missions are required in order to execute an application.

However, such applications simply read the manifest of a

given application without carry out any type of analysis on it.

Consequently, they neither provide any valuable information

on how the examined applications' declared permissions are

used, nor deduce whether an application is over-privileged.

We should also note that if an application is not over-

privileged does not necessary mean that it is not a malware

and vice versa. An application can be infected by a malware

either it is over-privileged or not; it may be the case that a pure

malware application does not over use privileges. Therefore,

our findings do not directly point out malware applications

but reveal (a) poor programming techniques from the de-

velopers side, and (b) potential points of manipulation.
Table 5 e Over-privilege list as identified by Stowaway
(Felt et al., 2011).

Type Over-privilege set

Expenses(1) READ_EXTERNAL_STORAGE

ACCESS_COARSE_LOCATION

Entertainment(1) e

Accessories(1) e

Expenses(2) WRITE_EXTERNAL_STORAGE

Shopping(1) e

Linguistic e

Hello-World WRITE_EXTERNAL_STORAGE

Shopping(2) e

Shopping(3) READ_SMS

Shopping(4) e

Entertainment(2) INTERNET

READ_PHONE_STATE

Accessories(2) e
7. Related work

In this section we mainly overview the works focus on the

elimination of users' privacy violations and permission

manipulation for Android and iOS operating systems as they

are the most used in the market. To clarify the reading of the

section, we clustered the solutions in four main groups.

Operating system and other general solutions: To elimi-

nate the risk of personal data manipulation Android and iOS

operating systems follow different approaches. On the one

hand, Android OS (Google) provides strong application isola-

tion. By default applications are not allowed to execute func-

tions that affect other applications or the user. Applications

have to declare in a manifest all “sensitive” operations that

can be accomplished during their execution, which the user

should endorse during installation. Android does not offer any

capability to users for dynamically enabling permissions. We

should also note that solutions provided by phone manufac-

turers such as KNOX,8 though enhance users' authentication,
secure communication channels and can control users' data
to eliminate possible data leaks, does not focus on the iden-

tification of over-privileged applications. On the other hand,

iOS (Apple) since version five, did not incorporate any func-

tionality to avoid data manipulation; iOS in fact, protects

users' data through developer license agreement. In the latest

release iOS enables users to enhance the control of their

personal data by requiring applications to get explicit

permission before accessing them. However, not only the

underlying security mechanism can be by-passed (e.g., (Miller

and Oberheide, 2012; Apple)), but, even worst, “benevolent”

applications might manipulate (a) personal data as demon-

strated in Enck et al. (2010), Gibler et al. (2012), or/and (b) the

granted permissions (Xing et al., 2014). In this context, the

security level of the Android OS is criticized in Shabtai et al.

(2010). Thus, various researches have been published to

enhance the security and privacy levels in the mobile plat-

forms relying either on dynamic or static analysis of the

application or/and the underlying frameworkdoperating

system.

Dynamic analysis security and privacy solutions: Taint-

Droid (Enck et al., 2010) describes an extension to the Android

platform that tracks the flow of sensitive data through third-

party applications in order to identify possible data leaks. In

the same direction, AppsPlayground (Rastogi et al., 2013) in-

troduces a framework to enable dynamic security analysis

with no supervision for detecting privacy leaks and malicious

functionalities. Similarly, solutions such as (Schreckling et al.,

2013; Kodeswaran et al., 2012) deploy a runtime monitor for

enabling users to control their data through their defined

policies. Feth and Pretschner (2012) introduce on the Taint-

Droid (Enck et al., 2010) the notion of fine grained security

policies to monitor applications' behavior, while Mockdroid

(Beresford et al., 2011) allows users to revoke access to

particular resources at run-time. Analogous research works

have been accomplished for iOS (Werthmann et al., 2013;

Egele et al., February 2011). To avoid the modifications in the
8 http://www.samsung.com/global/business/mobile/platform/
mobile-platform/knox/index_devicesecurity.html.

http://www.samsung.com/global/business/mobile/platform/mobile-platform/knox/index_devicesecurity.html
http://www.samsung.com/global/business/mobile/platform/mobile-platform/knox/index_devicesecurity.html
http://dx.doi.org/10.1016/j.cose.2014.10.005
http://dx.doi.org/10.1016/j.cose.2014.10.005
think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

think
高亮

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 1 9 2e2 0 5202
underlying framework (e.g., middleware, OS,etc.) Berthome

et al. (2012) propose application's repackaging approach in

which the compiled application is analyzed and injected with

particular code at the bytecode level for monitoring all ac-

cesses of personal data. DroidScope (Yan and Yin, 2012) relies

also on dynamic analysis, and introduces a fine-grained

instrumentation framework, for analyzing applications

which are known to bemalware to generate attack signatures.

Other virtualization platforms can be used to build a solution

for detecting personal data manipulation such as (Barr et al.,

Dec. 2010), malicious software, and over-privileged applica-

tions, with approaches similar to Argos (Portokalidis et al.,

2006), however, this domain of research is out of the scope

of thiswork. To the best of our knowledge, none of the existing

dynamic analysis approaches are used in the realm of over-

privileged applications.

Static analysis security and privacy solutions: In Xiao et al.

(2012), Gibler et al. (2012) are introduced complementary ap-

proaches to dynamic ones based on static analysis to classify

the information flows inside the application as safe or unsafe

in terms of privacy. AppProfiler (Rosen et al., 2013) develops a

knowledge base of privacy related behaviors, which is used to

assess the privacy “level” of a given application. ScanDroid

(Fuchs et al., 2009) extracts security specifications from the

manifest of the examined application and checks through

static analysis whether data flows is consistent with this

specifications, however, this solution has not yet been tested

in real-world applications.

Privilege based solutions: Besides the techniques used to

eliminate the privacy violations by controlling users data,

other works focus on privilege usage. Bartel et al. (2012a)

and Felt et al. (2011) introduce two different solutions,

which rely on application static analysis, to identify over-

privileges for any given application. Each of these solutions

develop a permission map first, and then rely on static
Table 6 e Features supported by different solutions.

Solution Static Dynamic Priva

TaintDroid (Enck et al., 2010) e ✓ ✓

AndroidLeaks (Gibler et al., 2012) ✓ e ✓

Bartel et al. (Bartel et al., 2012a) ✓ e e

Felt et al. (Felt et al., 2011) ✓ e e

AppProfiler (Rosen et al., 2013) ✓ e ✓

Berthome et al. (Berthome et al., 2012) e ✓ ✓

AppsPlayground (Rastogi et al., 2013) e ✓ ✓

Kynoid (Schreckling et al., 2013) e ✓ ✓

Kodeswaran et al. (Kodeswaran et al., 2012) e ✓ ✓

Feth et al. (Feth and Pretschner, 2012) e ✓ ✓

Mockdroid (Beresford et al., 2011) e e e

PSiOS (Werthmann et al., 2013) e e e

PiOS (Egele et al., February 2011) e e e

DroidScope (Yan and Yin, 2012) e ✓ e

Xiao et al. (Xiao et al., 2012) ✓ e ✓

SCanDroid (Fuchs et al., 2009) ✓ e ✓

Barrera et al. (Barrera et al., 2010) e e e

PScout (Au et al., 2012) e e e

Xuetao et al. (Wei et al., 2012) e e e

Felt et al. (Felt et al., 2012) e e e

Whyper (Pandita et al., 2013) e e e

Ryan et al. (Stevens et al., 2013) e e e

Our solution ✓ ✓ e
analysis to identify possible permission manipulation. Xing

et al. (2014) introduce a scanner tool for detecting applica-

tions that are vulnerable against the pileup threat. In this

approach, the released Android OS images are analyzed and

retrofit a mobile application, named SecUP, installed on

users' phones which extracts applications' manifest infor-

mation in order to identify the existence of vulnerable ap-

plications. This is a similar but alternative solution to our

approach.

Barrera et al. (2010) introduce a methodology based on

self-organized maps for assessing Anrdoid's permission

model and investigate how permissions are used by appli-

cations. Android's OS permission evolution over time is

studied in Au et al. (2012), Wei et al. (2012). To do so, PScout

(Au et al., 2012) develops a static analysis tool to analyze

Android's OS and extract its permission related features,

while Wei et al. (2012) focus mainly on the “developments” of

needless permissions based on the Stowaway solution. In an

alternative approach Felt et al. (2012) accomplish a thorough

survey to examine the effectiveness of the permission sys-

tem in terms of supporting users to take the appropriate se-

curity decisions for permission granting based on their

needs. Whyper (Pandita et al., 2013) introduces a natural

language processing technique that enables the deduction of

requesting access to specific permission based on applica-

tions' description. Stevens et al. (2013) propose a statistical

model for predicting permission misuse by relating the use of

common permissions with questions appeared in Stack-

Overflow website.

Table 6 summarizes the different features supported by

existing solutions. Approaches focusing on over-privileges

detection, mainly rely on static analysis, without taking into

account the real time context. We believe that our approach

complements other solutions such as Bartel et al. (2012a), Felt

et al. (2011), and improves detection accuracy.
cy Malware Over privilege Permission evolution Other

e e e e

e e e e

e ✓ e e

e ✓ e e

e e e e

e e e e

✓ e e e

e e e e

e e e e

e e e

e e e ✓

e e e ✓

e e e ✓

✓ e e e

e e e e

e e e e

e e ✓ e

e e ✓ e

e e ✓ e

e e ✓ e

e e e ✓

e e e ✓

e ✓ e e

http://dx.doi.org/10.1016/j.cose.2014.10.005
http://dx.doi.org/10.1016/j.cose.2014.10.005

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 1 9 2e2 0 5 203
8. Limitations and future work

Our approach's main limitation lies in the fact that the dy-

namic analysis might generate false positive alarms, since we

cannotguaranteeacomplete codecoverage forall thesensitive

APIs identified in the reverse engineered code of the examined

application. Even if currently we rely on a general test suite to

execute and navigate automatically the instrumented appli-

cation, there will be code paths that might not be covered. To

maximize the code coverage we are planing to introduce in a

future work (a) a capture-replay approach for simulating real

users' interaction, which however, needs first manual execu-

tion, and (b) symbolic execution which appears to be a good

option for state space exploration of an application.

Moreover, we are considering to exploit our solution to

study the over-privilege phenomenon on large scale. Howev-

er, because of application repackaging, not all the applications

can be executed successfully as the generated code might

violate the Android OS execution environment. This is a cur-

rent limitation of Dexpler (Bartel et al., 2012b) as it does not

handle optimized Dalvik (odex) opcodes. In addition, when

Dexpler infers types for ambiguous declarations the algorithm

supposes that the Dalvik bytecode is correct, which might not

be the case under all circumstances. Currently, we are looking

on these cases in order to eliminate such problems.
9. Conclusions

Over-privileged applications introduce new possibilities for

manipulating personal information and sensitive functional-

ities managed in smart-phones. Users have to trust applica-

tions requests for accessing sensitive resources, defined in

their manifests, if they would like to install and use them.

However, even benevolent over-privileged applications might

be exploited by malicious applications to gain access to

otherwise not-accessible (personal) data. In this paper, we

introduce an Android mobile application permissions' risk
evaluation approach that combines static and dynamic anal-

ysis to assess any given application as over-privileged with

certain degree of probability. This approach not only can

accurately identify whether an application is over-privileged

with certain confidence level, but also validates the need of

requesting access to the permissions declared in application's
manifest. Our approach is orthogonal to other solutions, and

can be used in order to compute mobile applications attack

surface and the risk introduced by over-privileges.

Acknowledgments

The authors would like to thank the anonymous reviewers

and David Shaw for their valuable comments.
Appendix A. Supplementary data

Supplementary data related to this article can be found at

http://dx.doi.org/10.1016/j.cose.2014.10.005.
r e f e r e n c e s

Ali K, Lhot�ak O. Application-only call graph construction. In:
Proceedings of the 26th European Conference on
Object-Oriented Programming. Springer-Verlag; 2012.
p. 688e712.

A tool for reverse engineering android apk files [Online]. Available
https://code.google.com/p/android-apktool/.

Androguard - reverse engineering, malware and goodware
analysis of android applications and more (ninja !) e google
project hosting. [Online]. Available http://code.google.com/p/
androguard/.

Android and security: Google bouncer. [Online]. Available http://
googlemobile.blogspot.it/2012/02/android-and-security.html.

ASM e home page.” [Online]. Available http://asm.ow2.org/.
Au KWY, Zhou YF, Huang Z, Lie D. Pscout: analyzing the android

permission specification. In: Proceedings of the 19th ACM
Conference on Computer and Communications Security.
ACM; 2012. p. 217e28.

Barr K, Bungale P, Deasy S, Gyuris V, Hung P, Newell C, et al. The
vmware mobile virtualization platform: is that a hypervisor in
your pocket? SIGOPS Oper Syst Rev Dec. 2010;44(4):124e35.

Barrera D, Kayacik HG, van Oorschot PC, Somayaji A. A
methodology for empirical analysis of permission-based
security models and its application to android. In: Proceedings
of the 17th ACM Conference on Computer and
Communications Security. ACM; 2010. p. 73e84.

Bartel A, Klein J, Le Traon Y, Monperrus M. Automatically
securing permission-based software by reducing the attack
surface: an application to android. In: Proceedings of the 27th
IEEE/ACM International Conference on Automated Software
Engineering. ACM; 2012. p. 274e7.

Bartel A, Klein J, Le Traon Y, Monperrus M. Dexpler: converting
android dalvik bytecode to jimple for static analysis with soot.
In: Proceedings of the ACM SIGPLAN International Workshop
on State of the Art in Java Program Analysis. ACM; 2012.
p. 27e38.

Beresford AR, Rice A, Skehin N, Sohan R. Mockdroid: trading
privacy for application functionality on smartphones. In:
Proceedings of the 12th Workshop on Mobile Computing
Systems and Applications. ACM; 2011. p. 49e54.

Berthome P, Fecherolle T, Guilloteau N, Lalande J-F. Repackaging
android applications for auditing access to private data. In:
Proceedings of the 7th International Conference on
Availability, Reliability and Security. IEEE Computer Society;
2012. p. 388e96.

Bishop M. Computer security: art and science. 1st ed. Addison-
Wesley Professional; dec 2002.

Dex2Jar e modify apk with dex-tools e tools to work with
android.dex and java.class files e google project hosting.
[Online]. Available http://code.google.com/p/dex2jar/wiki/
ModifyApkWithDexTool.

Egele M, Kruegel C, Kirda E, Vigna G. PiOS: detecting privacy leaks
in iOS applications. In: Proceedings of the Network and
Distributed System Security Symposium (NDSS); February
2011.

Enck W, Gilbert P, Chun B-G, Cox LP, Jung J, McDaniel P, et al.
Taintdroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. In: Proceedings of the 9th
USENIX Conference on Operating Systems Design and
Implementation. USENIX Association; 2010. p. 1e6.

FBI warns loozfon, FinFisher mobile malware hitting android
phones,” Oct. 2012. [Online]. Available http://www.
networkworld.com/community/blog/fbi-warns-loozfon-
finfisher-mobile-malware-hitting-android-phones.

Felt AP, Chin E, Hanna S, Song D, Wagner D. Android permissions
demystified. In: Proceedings of the 18th ACM Conference on

http://dx.doi.org/10.1016/j.cose.2014.10.005
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref1
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref1
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref1
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref1
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref1
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref1
https://code.google.com/p/android-apktool/
http://code.google.com/p/androguard/
http://code.google.com/p/androguard/
http://googlemobile.blogspot.it/2012/02/android-and-security.html
http://googlemobile.blogspot.it/2012/02/android-and-security.html
http://asm.ow2.org/
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref2
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref2
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref2
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref2
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref2
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref3
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref3
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref3
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref3
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref4
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref4
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref4
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref4
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref4
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref4
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref5
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref5
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref5
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref5
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref5
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref5
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref6
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref6
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref6
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref6
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref6
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref6
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref7
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref7
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref7
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref7
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref7
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref8
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref8
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref8
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref8
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref8
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref8
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref9
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref9
http://code.google.com/p/dex2jar/wiki/ModifyApkWithDexTool
http://code.google.com/p/dex2jar/wiki/ModifyApkWithDexTool
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref10
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref10
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref10
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref10
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref11
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref11
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref11
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref11
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref11
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref11
http://www.networkworld.com/community/blog/fbi-warns-loozfon-finfisher-mobile-malware-hitting-android-phones
http://www.networkworld.com/community/blog/fbi-warns-loozfon-finfisher-mobile-malware-hitting-android-phones
http://www.networkworld.com/community/blog/fbi-warns-loozfon-finfisher-mobile-malware-hitting-android-phones
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref12
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref12
http://dx.doi.org/10.1016/j.cose.2014.10.005
http://dx.doi.org/10.1016/j.cose.2014.10.005

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 1 9 2e2 0 5204
Computer and Communications Security. ACM; 2011.
p. 627e38.

Felt AP, Ha E, Egelman S, Haney A, Chin E, Wagner D. Android
permissions: user attention, comprehension, and behavior. In:
Proceedings of the 8th Symposium on Usable Privacy and
Security. ACM; 2012. 3:1e3:14.

Feth D, Pretschner A. Flexible data-driven security for android. In:
Proceedings of the 2012 IEEE Sixth International Conference
on Software Security and Reliability. IEEE Computer Society;
2012. p. 41e50.

Fuchs AP, Chaudhuri A, Foster JS. Scandroid: automated security
certification of android applications. Tech Rep 2009. Available
http://www.cs.umd.edu/~jfoster/papers/cs-tr-4991.pdf.

Gibler C, Crussell J, Erickson J, Chen H. Androidleaks:
automatically detecting potential privacy leaks in android
applications on a large scale. In: Proceedings of the 5th
International Conference on Trust and Trustworthy
Computing. Springer-Verlag; 2012. p. 291e307.

Gu G, Fogla P, Dagon D, Lee W, Skori�c B. Measuring intrusion
detection capability: an information-theoretic approach. In:
Proceedings of the ACM Symposium on Information,
Computer and Communications Security. ACM; 2006.
p. 90e101.

I. Apple, “ios.” [Online]. Available http://www.apple.com/ios/.
I. Google, “Andoid operating system.” [Online]. Available http://

source.android.com/.
Jad java decompiler. [Online]. Available http://varaneckas.com/

jad/.
Kaspersky security bulletin 2012. the overall statistics for 2012.”

[Online]. Available https://www.securelist.com/en/analysis/
204792255/Kaspersky_Security_Bulletin_2012_The_overall_
statistics_for_2012.

Kodeswaran P, Nandakumar V, Kapoor S, Kamaraju P, Joshi A,
Mukherjea S. Securing enterprise data on smartphones using
run time information flow control. In: Proceedings of the 13th
International Conference on Mobile Data Management. IEEE
Computer Society; 2012. p. 300e5.

Miller, C. and Oberheide, J. Dissecting the android bouncer.
[Online]. Available http://jon.oberheide.org/blog/2012/06/21/
dissecting-the-android-bouncer/.

Mobithinking, “Global mobile statistics 2013 part a: Mobile
subscribers; handset market share; mobile operators.”
[Online]. Available http://mobithinking.com/mobile-
marketing-tools/latest-mobile-stats/a#subscribers.

Mobile apps take data without permission. [Online]. Available
http://bits.blogs.nytimes.com/2012/02/15/google-and-mobile-
apps-take-data-books-without-permission/.

Orthacker C, Teufl P, Kraxberger S, Lackner G, Gissing M,
Marsalek A, et al. Android security permissions âV“ can we
trust them?. In: Proceedings of Security and Privacy in Mobile
Information and Communication Systems, vol. 94. Springer
Berlin Heidelberg; 2012. p. 40e51.

Pandita R, Xiao X, Yang W, Enck W, Xie T. Whyper: towards
automating risk assessment of mobile applications. In:
Proceedings of the 22nd USENIX Conference on Security.
USENIX Association; 2013. p. 527e42.

P. Ducklin, “Apple's app store bypassed by russian hacker, leaving
developers out of pocket.” [Online]. Available http://
nakedsecurity.sophos.com/2012/07/14/apple-app-store-
bypassed-by-russian-hacker-leaving-developers-out-of-
pocket/.

Portokalidis G, Slowinska A, Bos H. Argos: an emulator for
fingerprinting zero-day attacks for advertised honeypots with
automatic signature generation. In: Proceedings of the 1st
ACM SIGOPS/EuroSys European Conference on Computer
Systems 2006. ACM; 2006. p. 15e27.

Rastogi V, Chen Y, Enck W. Appsplayground: automatic security
analysis of smartphone applications. In: Proceedings of the
3rd ACM Conference on Data and Application Security and
Privacy. ACM; 2013. p. 209e20.

Rosen S, Qian Z, Mao ZM. AppProfiler: a flexible method of
exposing privacy-related behavior in android applications to
end users. In: Proceedings of the 3rd ACM Conference on
Data and Application Security and Privacy. ACM; 2013.
p. 221e32.

Schreckling D, Kstler J, Schaff M. Information Security Technical
Report. Kynoid: real-time enforcement of fine-grained, user-
defined, and data-centric security policies for android, vol. 17;
Feb 2013. p. 71e80. no. 3.

Shabtai A, Fledel Y, Kanonov U, Elovici Y, Dolev S, Glezer C.
Google android: a comprehensive security assessment. Secur
Priv IEEE 2010;8(2):35e44.

Stephan H, Siegfried R. Javascript in android apps âV“ an attack
vector. 2013 [Online]. Available, http://www.bodden.de/2013/
09/16/javascript-in-android-apps-an-attack-vector/.

Stevens R, Ganz J, Filkov V, Devanbu P, Chen H. Asking for (and
about) permissions used by android apps. In: Proceedings of
the 10th Working Conference on Mining Software
Repositories. IEEE Press; 2013. p. 31e40.

Stirparo P, Kounelis I. The mobileak project: forensics
methodology for mobile application privacy assessment. In:
Proceeding of the International Conference on Internet
Technology and Secured Transactions. IEEE Press; 2012.
p. 297e303.

Vallee-Rai R, Hendren LJ. Jimple: Simplifying java bytecode for
analyses and transformations. 1998 [Online]. Available, http://
www.sable.mcgill.ca/publications/techreports/sable-tr-1998-
4.ps.

Vall�ee-Rai R, Co P, Gagnon E, Hendren L, Lam P, Sundaresan V.
Soot - a java bytecode optimization framework. In:
Proceedings of the Conference of the Centre for
Advanced Studies on Collaborative Research. IBM Press; 1999.
p. 13.

Wei X, Gomez L, Neamtiu I, Faloutsos M. Permission evolution in
the android ecosystem. In: Proceedings of the 28th Annual
Computer Security Applications Conference. ACM; 2012.
p. 31e40.

Werthmann T, Hund R, Davi L, Sadeghi A-R, Holz T. Psios: bring
your own privacy and security to ios devices. In: Proceedings
of the 8th ACM SIGSAC symposium on Information, computer
and communications security. ACM; 2013. p. 13e24.

Xiao X, Tillmann N, Fahndrich M, De Halleux J, Moskal M. User-
aware privacy control via extended static-information-flow
analysis. In: Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering. ACM; 2012.
p. 80e9.

Xing L, Pan X, Wang R, Yuan K, Wang X. Upgrading your
android, elevating my malware: privilege escalation through
mobile os updating. In: Proceedings of the 35th IEEE
Symposium on Security and Privacy. IEEE Computer Society;
2014. p. 393e408.

Yan LK, Yin H. Droidscope: Seamlessly reconstructing the os and
dalvik semantic views for dynamic android malware analysis.
In: Proceedings of the 21st USENIX Conference on Security
Symposium. USENIX Association; 2012. p. 29.

Permission explorer. [Online]. Available https://play.google.com/
store/apps/details?id¼com.carlocriniti.android.permission_
explorer&hl¼en.

http://refhub.elsevier.com/S0167-4048(14)00151-5/sref12
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref12
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref12
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref13
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref13
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref13
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref13
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref13
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref14
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref14
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref14
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref14
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref14
http://www.cs.umd.edu/~jfoster/papers/cs-tr-4991.pdf
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref16
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref16
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref16
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref16
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref16
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref16
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref17
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref17
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref17
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref17
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref17
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref17
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref17
http://www.apple.com/ios/
http://source.android.com/
http://source.android.com/
http://varaneckas.com/jad/
http://varaneckas.com/jad/
https://www.securelist.com/en/analysis/204792255/Kaspersky_Security_Bulletin_2012_The_overall_statistics_for_2012
https://www.securelist.com/en/analysis/204792255/Kaspersky_Security_Bulletin_2012_The_overall_statistics_for_2012
https://www.securelist.com/en/analysis/204792255/Kaspersky_Security_Bulletin_2012_The_overall_statistics_for_2012
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref18
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref18
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref18
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref18
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref18
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref18
http://jon.oberheide.org/blog/2012/06/21/dissecting-the-android-bouncer/
http://jon.oberheide.org/blog/2012/06/21/dissecting-the-android-bouncer/
http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats/a#subscribers
http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats/a#subscribers
http://bits.blogs.nytimes.com/2012/02/15/google-and-mobile-apps-take-data-books-without-permission/
http://bits.blogs.nytimes.com/2012/02/15/google-and-mobile-apps-take-data-books-without-permission/
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref19
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref19
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref19
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref19
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref19
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref19
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref19
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref20
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref20
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref20
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref20
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref20
http://nakedsecurity.sophos.com/2012/07/14/apple-app-store-bypassed-by-russian-hacker-leaving-developers-out-of-pocket/
http://nakedsecurity.sophos.com/2012/07/14/apple-app-store-bypassed-by-russian-hacker-leaving-developers-out-of-pocket/
http://nakedsecurity.sophos.com/2012/07/14/apple-app-store-bypassed-by-russian-hacker-leaving-developers-out-of-pocket/
http://nakedsecurity.sophos.com/2012/07/14/apple-app-store-bypassed-by-russian-hacker-leaving-developers-out-of-pocket/
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref21
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref21
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref21
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref21
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref21
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref21
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref22
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref22
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref22
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref22
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref22
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref23
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref23
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref23
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref23
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref23
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref23
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref24
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref24
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref24
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref24
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref24
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref25
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref25
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref25
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref25
http://www.bodden.de/2013/09/16/javascript-in-android-apps-an-attack-vector/
http://www.bodden.de/2013/09/16/javascript-in-android-apps-an-attack-vector/
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref27
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref27
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref27
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref27
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref27
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref28
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref28
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref28
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref28
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref28
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref28
http://www.sable.mcgill.ca/publications/techreports/sable-tr-1998-4.ps
http://www.sable.mcgill.ca/publications/techreports/sable-tr-1998-4.ps
http://www.sable.mcgill.ca/publications/techreports/sable-tr-1998-4.ps
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref30
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref30
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref30
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref30
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref30
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref30
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref31
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref31
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref31
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref31
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref31
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref32
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref32
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref32
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref32
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref32
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref33
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref33
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref33
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref33
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref33
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref33
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref34
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref34
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref34
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref34
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref34
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref34
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref35
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref35
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref35
http://refhub.elsevier.com/S0167-4048(14)00151-5/sref35
https://play.google.com/store/apps/details?id=com.carlocriniti.android.permission_explorer%26hl=en
https://play.google.com/store/apps/details?id=com.carlocriniti.android.permission_explorer%26hl=en
https://play.google.com/store/apps/details?id=com.carlocriniti.android.permission_explorer%26hl=en
https://play.google.com/store/apps/details?id=com.carlocriniti.android.permission_explorer%26hl=en
https://play.google.com/store/apps/details?id=com.carlocriniti.android.permission_explorer%26hl=en
https://play.google.com/store/apps/details?id=com.carlocriniti.android.permission_explorer%26hl=en
http://dx.doi.org/10.1016/j.cose.2014.10.005
http://dx.doi.org/10.1016/j.cose.2014.10.005

c om p u t e r s & s e c u r i t y 4 9 (2 0 1 5) 1 9 2e2 0 5 205
Dimitris Geneiatakis holds a Ph.D. in the field of Information and
Communication Systems Security from the Department of Infor-
mation and Communications Systems Engineering of the Uni-
versity of Aegean, Greece. His current research interests are in the
areas of security mechanisms in Internet telephony, smart cards,
intrusion detection systems, and network and software security.
Currently, he is postdoctoral researcher at Joint Research Centre
of European Commission. Previously, was within Columbia Uni-
versity as a postdoctoral researcher. He is an author of more than
thirty refereed papers in international journals and conference
proceedings.

Igor Nai Fovino holds a Ph.D. in computer security. His research
fields belong to the area of ICT Security of industrial systems and
Smart Grids, Intrusion Detection Techniques, Cryptography and
Secure Network Protocols. He is an author of more than sixty
scientific papers published on international journals, books and
conference proceedings. He is member of the IFIP Working group
11.10 for the Protection of Critical Infrastructures and serves as
International Expert within the ERNCIP European Expert Group on
the security of Energy Smart Grids. Currently, he is within the Joint
Research Centre of the European Commission as a scientic project
manager.
Ioannis Kounelis is an ICT security researcher working at the Joint
Research Centre of the European Commission. He is in parallel a
Ph.D. student at the Royal Institute of Technology - KTH in
Stockholm, Sweden. He has received his Master of Science in
Computer Security in 2010 fromKTH, while in 2007 he received his
Bachelor of Science in Computer Science from the Aristotle Uni-
versity of Thessaloniki, Greece. His main research activities focus
on mobile security and secure system design.

Pasquale Stirparo is a Ph.D. student at the KTH - Royal Institute
of Tech-nology in Stockholm and holds a MSc in Computer
Engineering from Politecnico di Torino. His research interests
revolve around digital forensics and the security and privacy is-
sues related to mobile devices communication protocols.
Currently, he is working as Digital Forensics and Mobile Security
Researcher at the Joint Research Centre of the European Com-
mission. Prior to join JRC, Pasquale was working as Security
Consultant and Digital Forensics Analyst for an Italian based
private company. He has also been invited as speaker to several
Italian conferences and seminars on Digital Forensics.

http://dx.doi.org/10.1016/j.cose.2014.10.005
http://dx.doi.org/10.1016/j.cose.2014.10.005

	A Permission verification approach for android mobile applications
	1. Introduction
	2. Android permission-based security model
	3. Threat model: permissions' Back-Doors
	4. Proposed approach
	4.1. Application analysis and repackaging
	4.2. Theoretical framework
	4.3. Permissions' risk & false identification assessment
	4.4. Identify over-privileged applications

	5. Evaluation
	6. Discussion
	7. Related work
	8. Limitations and future work
	9. Conclusions
	Acknowledgments
	Appendix A. Supplementary data
	References

